I get that Sum[A, B]
is not the same as Sum[A, B] { type Out = C }
or
Sum.Aux[A, B, C]
. I'm asking why do I need type Out
at all rather than
just Sum[A, B, C]
.
The difference is in partial application. For trait MyTrait { type A; type B; type C }
you can specify some of types and not specify others (expecting that compiler infers them). But for trait MyTrait[A, B, C]
you can only either specify all of them or not specify any of them.
For Sum[A, B] { type Out }
you would prefer to specify A
, B
and not specify Out
(expecting that compiler infers its value based on implicits existing in scope). Similarly for trait Last[In] { type Out }
you would prefer to specify In
and not specify Out
(expecting that compiler infers its value).
So type parameters are more like inputs and type members are more like outputs.
https://www.youtube.com/watch?v=R8GksuRw3VI
Abstract types versus type parameters and linked questions
But when exactly, would I prefer to specify In
and not specify Out
?
Let's consider the following example. It's a type class for addition of natural numbers:
sealed trait Nat
case object Zero extends Nat
type Zero = Zero.type
case class Succ[N <: Nat](n: N) extends Nat
type One = Succ[Zero]
type Two = Succ[One]
type Three = Succ[Two]
type Four = Succ[Three]
type Five = Succ[Four]
val one: One = Succ(Zero)
val two: Two = Succ(one)
val three: Three = Succ(two)
val four: Four = Succ(three)
val five: Five = Succ(four)
trait Add[N <: Nat, M <: Nat] {
type Out <: Nat
def apply(n: N, m: M): Out
}
object Add {
type Aux[N <: Nat, M <: Nat, Out0 <: Nat] = Add[N, M] { type Out = Out0 }
def instance[N <: Nat, M <: Nat, Out0 <: Nat](f: (N, M) => Out0): Aux[N, M, Out0] = new Add[N, M] {
override type Out = Out0
override def apply(n: N, m: M): Out = f(n, m)
}
implicit def zeroAdd[M <: Nat]: Aux[Zero, M, M] = instance((_, m) => m)
implicit def succAdd[N <: Nat, M <: Nat, N_addM <: Nat](implicit add: Aux[N, M, N_addM]): Aux[Succ[N], M, Succ[N_addM]] =
instance((succN, m) => Succ(add(succN.n, m)))
}
This type class works both on type level
implicitly[Add.Aux[Two, Three, Five]]
and value level
println(implicitly[Add[Two, Three]].apply(two, three))//Succ(Succ(Succ(Succ(Succ(Zero)))))
assert(implicitly[Add[Two, Three]].apply(two, three) == five)//ok
Now let's rewrite it with type parameter instead of type member:
trait Add[N <: Nat, M <: Nat, Out <: Nat] {
def apply(n: N, m: M): Out
}
object Add {
implicit def zeroAdd[M <: Nat]: Add[Zero, M, M] = (_, m) => m
implicit def succAdd[N <: Nat, M <: Nat, N_addM <: Nat](implicit add: Add[N, M, N_addM]): Add[Succ[N], M, Succ[N_addM]] =
(succN, m) => Succ(add(succN.n, m))
}
On type level it works similarly
implicitly[Add[Two, Three, Five]]
But on value level now you have to specify type Five
while in the former case it was inferred by compiler.
println(implicitly[Add[Two, Three, Five]].apply(two, three))//Succ(Succ(Succ(Succ(Succ(Zero)))))
assert(implicitly[Add[Two, Three, Five]].apply(two, three) == five)//ok
So the difference is in partial application.
But if you add a +
syntax sugar as you normally would to make it
practical (shapeless also does it for everything), the dependent type
doesn't seem to matter
Syntax helps not always. For example let's consider a type class that accepts a type (but not value of this type) and produces a type and value of this type:
trait MyTrait {
type T
}
object Object1 extends MyTrait
object Object2 extends MyTrait
trait TypeClass[In] {
type Out
def apply(): Out
}
object TypeClass {
type Aux[In, Out0] = TypeClass[In] { type Out = Out0 }
def instance[In, Out0](x: Out0): Aux[In, Out0] = new TypeClass[In] {
override type Out = Out0
override def apply(): Out = x
}
def apply[In](implicit tc: TypeClass[In]): Aux[In, tc.Out] = tc
implicit val makeInstance1: Aux[Object1.T, Int] = instance(1)
implicit val makeInstance2: Aux[Object2.T, String] = instance("a")
}
println(TypeClass[Object1.T].apply())//1
println(TypeClass[Object2.T].apply())//a
but if we make Out
a type parameter then upon call we'll have to specify Out
and there's no way to define extension method and infer type parameter In
from element type since there are no elements of the types Object1.T
, Object2.T
.
Sum[A, B]
is not the same asSum[A, B] { type Out = C }
orSum.Aux[A, B, C]
. I'm asking why do I needtype Out
at all rather than justSum[A, B, C]
. – Pressure