I am trying to get the basic english word for an english word which is modified from its base form. This question had been asked here, but I didnt see a proper answer, so I am trying to put it this way. I tried 2 stemmers and one lemmatizer from NLTK package which are porter stemmer, snowball stemmer, and wordnet lemmatiser.
I tried this code:
from nltk.stem.porter import PorterStemmer
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
words = ['arrival','conclusion','ate']
for word in words:
print "\n\nOriginal Word =>", word
print "porter stemmer=>", PorterStemmer().stem(word)
snowball_stemmer = SnowballStemmer("english")
print "snowball stemmer=>", snowball_stemmer.stem(word)
print "WordNet Lemmatizer=>", WordNetLemmatizer().lemmatize(word)
This is the output I get:
Original Word => arrival
porter stemmer=> arriv
snowball stemmer=> arriv
WordNet Lemmatizer=> arrival
Original Word => conclusion
porter stemmer=> conclus
snowball stemmer=> conclus
WordNet Lemmatizer=> conclusion
Original Word => ate
porter stemmer=> ate
snowball stemmer=> ate
WordNet Lemmatizer=> ate
but I want this output
Input : arrival
Output: arrive
Input : conclusion
Output: conclude
Input : ate
Output: eat
How can I achieve this? Are there any tools already available for this? This is called as morphological analysis. I am aware of that, but there must be some tools which are already achieving this. Help is appreciated :)
First Edit
I tried this code
import nltk
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tokenize import word_tokenize
from nltk.corpus import wordnet as wn
query = "The Indian economy is the worlds tenth largest by nominal GDP and third largest by purchasing power parity"
def is_noun(tag):
return tag in ['NN', 'NNS', 'NNP', 'NNPS']
def is_verb(tag):
return tag in ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ']
def is_adverb(tag):
return tag in ['RB', 'RBR', 'RBS']
def is_adjective(tag):
return tag in ['JJ', 'JJR', 'JJS']
def penn_to_wn(tag):
if is_adjective(tag):
return wn.ADJ
elif is_noun(tag):
return wn.NOUN
elif is_adverb(tag):
return wn.ADV
elif is_verb(tag):
return wn.VERB
return wn.NOUN
tags = nltk.pos_tag(word_tokenize(query))
for tag in tags:
wn_tag = penn_to_wn(tag[1])
print tag[0]+"---> "+WordNetLemmatizer().lemmatize(tag[0],wn_tag)
Here, I tried to use wordnet lemmatizer by providing proper tags. Here is the output:
The---> The
Indian---> Indian
economy---> economy
is---> be
the---> the
worlds---> world
tenth---> tenth
largest---> large
by---> by
nominal---> nominal
GDP---> GDP
and---> and
third---> third
largest---> large
by---> by
purchasing---> purchase
power---> power
parity---> parity
Still, words like "arrival" and "conclusion" wont get processed with this approach. Is there any solution for this?
lemmatize("conclusion")
– Debt