I just implemented the generalised dice loss (multi-class version of dice loss) in keras, as described in ref :
(my targets are defined as: (batch_size, image_dim1, image_dim2, image_dim3, nb_of_classes))
def generalized_dice_loss_w(y_true, y_pred):
# Compute weights: "the contribution of each label is corrected by the inverse of its volume"
Ncl = y_pred.shape[-1]
w = np.zeros((Ncl,))
for l in range(0,Ncl): w[l] = np.sum( np.asarray(y_true[:,:,:,:,l]==1,np.int8) )
w = 1/(w**2+0.00001)
# Compute gen dice coef:
numerator = y_true*y_pred
numerator = w*K.sum(numerator,(0,1,2,3))
numerator = K.sum(numerator)
denominator = y_true+y_pred
denominator = w*K.sum(denominator,(0,1,2,3))
denominator = K.sum(denominator)
gen_dice_coef = numerator/denominator
return 1-2*gen_dice_coef
But something must be wrong. I'm working with 3D images that I have to segment for 4 classes (1 background class and 3 object classes, I have a imbalanced dataset). First odd thing: while my train loss and accuracy improve during training (and converge really fast), my validation loss/accuracy are constant trough epochs (see image). Second, when predicting on test data, only the background class is predicted: I get a constant volume.
I used the exact same data and script but with categorical cross-entropy loss and get plausible results (object classes are segmented). Which means something is wrong with my implementation. Any idea what it could be?
Plus I believe it would be usefull to the keras community to have a generalised dice loss implementation, as it seems to be used in most of recent semantic segmentation tasks (at least in the medical image community).
PS: it seems odd to me how the weights are defined; I get values around 10^-10. Anyone else has tried to implement this? I also tested my function without the weights but get same problems.