For anyone using generics here is a ready-to-use implementation of insertion and merge sort, both stable sorting algorithms.
uses Generics.Defaults, Generics.Collections;
type
TMySort = class
public
class procedure InsertionSort<T>(AArray: TArray<T>; FirstIndex, LastIndex: Integer; const AComparer: IComparer<T>); static;
class procedure MergeSort<T>(AArray: TArray<T>; FirstIndex, LastIndex: Integer; const AComparer: IComparer<T>); static;
end;
implementation
class procedure TMySort.InsertionSort<T>(AArray: TArray<T>; FirstIndex, LastIndex: Integer; const AComparer: IComparer<T>);
var
UnsortedIdx, CompareIdx: Integer;
AItem: T;
begin
for UnsortedIdx := Succ(FirstIndex) to LastIndex do begin
AItem := AArray[UnsortedIdx];
CompareIdx := UnsortedIdx - 1;
while (CompareIdx >= FirstIndex) and (AComparer.Compare(AItem, AArray[CompareIdx]) < 0) do begin
AArray[CompareIdx + 1] := AArray[CompareIdx]; { shift the compared (bigger) item to the right }
Dec(CompareIdx);
end;
AArray[CompareIdx + 1] := AItem;
end;
end;
class procedure TMySort.MergeSort<T>(AArray: TArray<T>; FirstIndex, LastIndex: Integer; const AComparer: IComparer<T>);
const
MinMergeSortLimit = 16;
var
LeftLast, RightFirst: Integer;
LeftIdx, RightIdx, SortedIdx: Integer;
LeftCount: Integer;
TmpLeftArray: TArray<T>;
begin
if (LastIndex - FirstIndex) < MinMergeSortLimit then
{ sort small chunks with insertion sort (recursion ends here)}
TMySort.InsertionSort<T>(AArray, FirstIndex, LastIndex, AComparer)
else begin
{ MERGE SORT }
{ calculate the index for splitting the array in left and right halves }
LeftLast := (FirstIndex + LastIndex) div 2;
RightFirst := LeftLast + 1;
{ sort both halves of the array recursively }
TMySort.MergeSort<T>(AArray, FirstIndex, LeftLast, AComparer);
TMySort.MergeSort<T>(AArray, RightFirst, LastIndex, AComparer);
{ copy the first half of the array to a temporary array }
LeftCount := LeftLast - FirstIndex + 1;
TmpLeftArray := System.Copy(AArray, FirstIndex, LeftCount);
{ setup the loop variables }
LeftIdx := 0; { left array to merge -> moved to TmpLeftArray, starts at index 0 }
RightIdx := RightFirst; { right array to merge -> second half of AArray }
SortedIdx := FirstIndex - 1; { range of merged items }
{ merge item by item until one of the arrays is empty }
while (LeftIdx < LeftCount) and (RightIdx <= LastIndex) do begin
{ get the smaller item from the next items in both arrays and move it
each step will increase the sorted range by 1 and decrease the items still to merge by 1}
Inc(SortedIdx);
if AComparer.Compare(TmpLeftArray[LeftIdx], AArray[RightIdx]) <= 0 then begin
AArray[SortedIdx] := TmpLeftArray[LeftIdx];
Inc(LeftIdx);
end else begin
AArray[SortedIdx] := AArray[RightIdx];
Inc(RightIdx);
end;
end;
{ copy the rest of the left array, if there is any}
while (LeftIdx < LeftCount) do begin
Inc(SortedIdx);
AArray[SortedIdx] := TmpLeftArray[LeftIdx];
Inc(LeftIdx);
end;
{ any rest of the right array is already in place }
end;
end;
The implementation is made for arrays and applicable for TList/TObjectList too (as their Items property is an array).
var
AList: TList<T>;
AComparer: IComparer<T>;
begin
...
TMySort.MergeSort<T>(AList.List, 0, AList.Count-1, AComparer);
...
end;
Besides being stable, in my experience, this merge sort implementation does show better performance than the build-in quick sort (though it uses more memory).