Problem domain
I'm working on a rather big application, which uses a hierarchical data model. It takes images, extracts images' features and creates analysis objects on top of these. So the basic model is like Object-(1:N)-Image_features-(1:1)-Image. But the same set of images may be used to create multiple analysis objects (with different options).
Then an object and image can have a lot of other connected objects, like the analysis object can be refined with additional data or complex conclusions (solutions) can be based on the analysis object and other data.
Current solution
This is a sketch of the solution. Stacks represent sets of objects, arrows represent pointers (i.e. image features link to their images, but not vice versa). Some parts: images, image features, additional data, may be included in multiple analysis objects (because user wants to make analysis on different sets of object, combined differently).
Images, features, additional data and analysis objects are stored in global storage (god-object). Solutions are stored inside analysis objects by means of composition (and contain solution features in turn).
All the entities (images, image features, analysis objects, solutions, additional data) are instances of corresponding classes (like IImage, ...). Almost all the parts are optional (i.e., we may want to discard images after we have a solution).
Current solution drawbacks
- Navigating this structure is painful, when you need connections like the dotted one in the sketch. If you have to display an image with a couple of solutions features on top, you first have to iterate through analysis objects to find which of them are based on this image, and then iterate through the solutions to display them.
- If to solve 1. you choose to explicitly store dotted links (i.e. image class will have pointers to solution features, which are related to it), you'll put very much effort maintaining consistency of these pointers and constantly updating the links when something changes.
My idea
I'd like to build a more extensible (2) and flexible (1) data model. The first idea was to use a relational model, separating objects and their relations. And why not use RDBMS here - sqlite seems an appropriate engine to me. So complex relations will be accessible by simple (left)JOIN's on the database: pseudocode "images JOIN images_to_image_features JOIN image_features JOIN image_features_to_objects JOIN objects JOIN solutions JOIN solution_features
") and then fetching actual C++ objects for solution features from global storage by ID.
The question
So my primary question is
- Is using RDBMS an appropriate solution for problems I described, or it's not worth it and there are better ways to organize information in my app?
If RDBMS is ok, I'd appreciate any advice on using RDBMS and relational approach to store C++ objects' relationships.