I am trying to use XGBoost to model claims frequency of data generated from unequal length exposure periods, but have been unable to get the model to treat the exposure correctly. I would normally do this by setting log(exposure) as an offset - are you able to do this in XGBoost?
(A similar question was posted here: xgboost, offset exposure?)
To illustrate the issue, the R code below generates some data with the fields:
- x1, x2 - factors (either 0 or 1)
- exposure - length of policy period on observed data
- frequency - mean number of claims per unit exposure
- claims - number of observed claims ~Poisson(frequency*exposure)
The goal is to predict frequency using x1 and x2 - the true model is: frequency = 2 if x1 = x2 = 1, frequency = 1 otherwise.
Exposure can't be used to predict the frequency as it is not known at the outset of a policy. The only way we can use it is to say: expected number of claims = frequency * exposure.
The code tries to predict this using XGBoost by:
- Setting exposure as a weight in the model matrix
- Setting log(exposure) as an offset
Below these, I've shown how I would handle the situation for a tree (rpart) or gbm.
set.seed(1)
size<-10000
d <- data.frame(
x1 = sample(c(0,1),size,replace=T,prob=c(0.5,0.5)),
x2 = sample(c(0,1),size,replace=T,prob=c(0.5,0.5)),
exposure = runif(size, 1, 10)*0.3
)
d$frequency <- 2^(d$x1==1 & d$x2==1)
d$claims <- rpois(size, lambda = d$frequency * d$exposure)
#### Try to fit using XGBoost
require(xgboost)
param0 <- list(
"objective" = "count:poisson"
, "eval_metric" = "logloss"
, "eta" = 1
, "subsample" = 1
, "colsample_bytree" = 1
, "min_child_weight" = 1
, "max_depth" = 2
)
## 1 - set weight in xgb.Matrix
xgtrain = xgb.DMatrix(as.matrix(d[,c("x1","x2")]), label = d$claims, weight = d$exposure)
xgb = xgb.train(
nrounds = 1
, params = param0
, data = xgtrain
)
d$XGB_P_1 <- predict(xgb, xgtrain)
## 2 - set as offset in xgb.Matrix
xgtrain.mf <- model.frame(as.formula("claims~x1+x2+offset(log(exposure))"),d)
xgtrain.m <- model.matrix(attr(xgtrain.mf,"terms"),data = d)
xgtrain <- xgb.DMatrix(xgtrain.m,label = d$claims)
xgb = xgb.train(
nrounds = 1
, params = param0
, data = xgtrain
)
d$XGB_P_2 <- predict(model, xgtrain)
#### Fit a tree
require(rpart)
d[,"tree_response"] <- cbind(d$exposure,d$claims)
tree <- rpart(tree_response ~ x1 + x2,
data = d,
method = "poisson")
d$Tree_F <- predict(tree, newdata = d)
#### Fit a GBM
gbm <- gbm(claims~x1+x2+offset(log(exposure)),
data = d,
distribution = "poisson",
n.trees = 1,
shrinkage=1,
interaction.depth=2,
bag.fraction = 0.5)
d$GBM_F <- predict(gbm, newdata = d, n.trees = 1, type="response")