I'm trying to implement an LSTM in CNTK (using Python) to classify a sequence.
Input:
Features are fixed length sequences of numbers (a time series)
Labels are vectors of one-hot values
Network:
input = input_variable(input_dim)
label = input_variable(num_output_classes)
h = Recurrence(LSTM(lstm_dim)) (input)
final_output = C.sequence.last(h)
z = Dense(num_output_classes) (final_output)
loss = C.cross_entropy_with_softmax(z, label)
Output: A probability that the sequence matches a label
All sizes are fixed, so I don't think I need any dynamic axis and haven't specified any.
However, CNTK is not happy and I get:
return cross_entropy_with_softmax(output_vector, target_vector, axis, name)
RuntimeError: Currently if an operand of a elementwise operation has any dynamic axes, those must match the dynamic axes of the other operands
If (as per some of the examples) I define label with a dynamic axis
label = input_variable(num_output_classes, dynamic_axes=[C.Axis.default_batch_axis()])
It no longer complains about this, and gets further to:
tf = np.split(training_features,num_minibatches)
tl = np.split(training_labels, num_minibatches)
for i in range(num_minibatches*num_passes): # multiply by the
features = np.ascontiguousarray(tf[i%num_minibatches])
labels = np.ascontiguousarray(tl[i%num_minibatches])
# Specify the mapping of input variables in the model to actual minibatch data to be trained with
trainer.train_minibatch({input : features, label : labels})
But dies with this error:
File "C:\Users\Dev\Anaconda3\envs\cntk-py34\lib\site-packages\cntk\cntk_py.py", line 1745, in train_minibatch
return _cntk_py.Trainer_train_minibatch(self, *args)
RuntimeError: Node '__v2libuid__Plus561__v2libname__Plus552' (Plus operation): DataFor: FrameRange's dynamic axis is inconsistent with matrix: {numTimeSteps:1, numParallelSequences:100, sequences:[{seqId:0, s:0, begin:0, end:1}, {seqId:1, s:1, begin:0, end:1}, {seqId:2, s:2, begin:0, end:1}, {seqId:3, s:3, begin:0, end:1}, {seq...
What do I need to do to fix this?