How to replace NaNs by preceding or next values in pandas DataFrame?
Asked Answered
S

10

267

Suppose I have a DataFrame with some NaNs:

>>> import pandas as pd
>>> df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
>>> df
    0   1   2
0   1   2   3
1   4 NaN NaN
2 NaN NaN   9

What I need to do is replace every NaN with the first non-NaN value in the same column above it. It is assumed that the first row will never contain a NaN. So for the previous example the result would be

   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

I can just loop through the whole DataFrame column-by-column, element-by-element and set the values directly, but is there an easy (optimally a loop-free) way of achieving this?

Skivvy answered 12/1, 2015 at 15:22 Comment(0)
E
403

You could use the fillna method on the DataFrame and specify the method as ffill (forward fill):

>>> df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
>>> df.fillna(method='ffill')
   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

This method...

propagate[s] last valid observation forward to next valid

To go the opposite way, there's also a bfill method.

This method doesn't modify the DataFrame inplace - you'll need to rebind the returned DataFrame to a variable or else specify inplace=True:

df.fillna(method='ffill', inplace=True)
Erbil answered 12/1, 2015 at 15:25 Comment(1)
What if the blank cell was in the column names index (i.e., a couple of the columns didn't have names but did have data. Is there a way to use bfill or ffill to fill the blank column index cell with the cell in the row immediately below it? For instance: df = pd.DataFrame({'col1': [2, 4, 8], 'col2': [2, 0, 0], '': [10, 2, 1]}, index=['falcon', 'dog', 'spider'']) How could I use bfill or ffill to change the name of the third column to 10 (which is the value of the row immediately below the blank third column name? Thanks!Teratology
Y
59

The accepted answer is perfect. I had a related but slightly different situation where I had to fill in forward but only within groups. In case someone has the same need, know that fillna works on a DataFrameGroupBy object.

>>> example = pd.DataFrame({'number':[0,1,2,nan,4,nan,6,7,8,9],'name':list('aaabbbcccc')})
>>> example
  name  number
0    a     0.0
1    a     1.0
2    a     2.0
3    b     NaN
4    b     4.0
5    b     NaN
6    c     6.0
7    c     7.0
8    c     8.0
9    c     9.0
>>> example.groupby('name')['number'].fillna(method='ffill') # fill in row 5 but not row 3
0    0.0
1    1.0
2    2.0
3    NaN
4    4.0
5    4.0
6    6.0
7    7.0
8    8.0
9    9.0
Name: number, dtype: float64
Yordan answered 1/6, 2017 at 22:53 Comment(1)
exactly what I was looking for, tyNephridium
R
24

One thing that I noticed when trying this solution is that if you have N/A at the start or the end of the array, ffill and bfill don't quite work. You need both.

In [224]: df = pd.DataFrame([None, 1, 2, 3, None, 4, 5, 6, None])

In [225]: df.ffill()
Out[225]:
     0
0  NaN
1  1.0
...
7  6.0
8  6.0

In [226]: df.bfill()
Out[226]:
     0
0  1.0
1  1.0
...
7  6.0
8  NaN

In [227]: df.bfill().ffill()
Out[227]:
     0
0  1.0
1  1.0
...
7  6.0
8  6.0
Ripon answered 17/3, 2017 at 4:47 Comment(2)
Brilliant. I needed exactly this for my problem. Filling both before and after. Thanks a lot.Giarla
Great. I need this solution. ThanksJacquelyn
L
19

You can use pandas.DataFrame.fillna with the method='ffill' option. 'ffill' stands for 'forward fill' and will propagate last valid observation forward. The alternative is 'bfill' which works the same way, but backwards.

import pandas as pd

df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
df = df.fillna(method='ffill')

print(df)
#   0  1  2
#0  1  2  3
#1  4  2  3
#2  4  2  9

There is also a direct synonym function for this, pandas.DataFrame.ffill, to make things simpler.

Lancewood answered 12/1, 2015 at 15:25 Comment(0)
M
13

Only one column version

  • Fill NAN with last valid value
df[column_name].fillna(method='ffill', inplace=True)
  • Fill NAN with next valid value
df[column_name].fillna(method='backfill', inplace=True)
Messmate answered 19/12, 2018 at 7:45 Comment(2)
How do fill values of multiple columns but not all?Me
@Me check this, it should help: #34914090Me
F
13

Just agreeing with ffill method, but one extra info is that you can limit the forward fill with keyword argument limit.

>>> import pandas as pd    
>>> df = pd.DataFrame([[1, 2, 3], [None, None, 6], [None, None, 9]])

>>> df
     0    1   2
0  1.0  2.0   3
1  NaN  NaN   6
2  NaN  NaN   9

>>> df[1].fillna(method='ffill', inplace=True)
>>> df
     0    1    2
0  1.0  2.0    3
1  NaN  2.0    6
2  NaN  2.0    9

Now with limit keyword argument

>>> df[0].fillna(method='ffill', limit=1, inplace=True)

>>> df
     0    1  2
0  1.0  2.0  3
1  1.0  2.0  6
2  NaN  2.0  9
Fatsoluble answered 16/3, 2019 at 14:0 Comment(0)
A
10

You can use fillna to remove or replace NaN values.

NaN Remove

import pandas as pd

df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])

df.fillna(method='ffill')
     0    1    2
0  1.0  2.0  3.0
1  4.0  2.0  3.0
2  4.0  2.0  9.0

NaN Replace

df.fillna(0) # 0 means What Value you want to replace 
     0    1    2
0  1.0  2.0  3.0
1  4.0  0.0  0.0
2  0.0  0.0  9.0

Reference pandas.DataFrame.fillna

Arjan answered 22/12, 2019 at 3:29 Comment(0)
P
9

ffill now has it's own method pd.DataFrame.ffill

df.ffill()

     0    1    2
0  1.0  2.0  3.0
1  4.0  2.0  3.0
2  4.0  2.0  9.0
Purloin answered 31/3, 2017 at 0:50 Comment(0)
P
4

There's also pandas.Interpolate, which I think gives one more control

import pandas as pd
df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])

df=df.interpolate(method="pad",limit=None, downcast="infer") #downcast keeps dtype as int 
print(df)  

   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9
Premeditate answered 10/12, 2022 at 2:31 Comment(0)
V
1

In my case, we have time series from different devices but some devices could not send any value during some period. So we should create NA values for every device and time period and after that do fillna.

df = pd.DataFrame([["device1", 1, 'first val of device1'], ["device2", 2, 'first val of device2'], ["device3", 3, 'first val of device3']])
df.pivot(index=1, columns=0, values=2).fillna(method='ffill').unstack().reset_index(name='value')

Result:

        0   1   value
0   device1     1   first val of device1
1   device1     2   first val of device1
2   device1     3   first val of device1
3   device2     1   None
4   device2     2   first val of device2
5   device2     3   first val of device2
6   device3     1   None
7   device3     2   None
8   device3     3   first val of device3
Veda answered 19/7, 2018 at 15:11 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.