If you have to store a const
reference to some instance of type B
into your class A
, then surely you want to be ensured, that lifetime of A
instance will be exceeded by the lifetime of B
instance:
B b{};
A a1{b}; // allowed
A a2{B{}}; // should be denied
B const f() { return B{}; } // const result type may make sense for user-defined types
A a3{f()}; // should also be denied!
To make it possible you should explicitly to = delete;
all the constructor overloadings, which can accept rvalues (both const &&
and &&
). For this to achieve you should just to = delete;
only const &&
version of constructor.
struct B {};
struct A
{
B const & b;
A(B const & bb) : b(bb) { ; } // accepts only `B const &` and `B &`
A(B const &&) = delete; // prohibits both `B &&` and `B const &&`
};
This approach allows you to prohibit passing to the constructor all kinds of rvalues.
This also works for built-in scalars. For example, double const f() { return 0.01; }
, though it cause a warning like:
warning: 'const' type qualifier on return type has no effect [-Wignored-qualifiers]
it still can has effect if you just = delete;
only &&
version of constructor:
struct A
{
double const & eps;
A(double const & e) : eps(e) {} // binds to `double const &`, `double &` AND ! `double const &&`
A(double &&) = delete; // prohibit to binding only to `double &&`, but not to `double const &&`
};
double const get_eps() { return 0.01; }
A a{0.01}; // hard error
A a{get_eps()}; // no hard error, but it is wrong!
For non-conversion constructors (i.e. non-unary) there is an issue: you may have to provide = delete;
-d versions for all the combinatorically possible versions of constructors as follows:
struct A
{
A(B const &, C const &) {}
A(B const &&, C const &&) = delete;
// and also!
A(B const &, C const &&) = delete;
A(B const &&, C const &) = delete;
};
to prohibit mixed-cases like:
B b{};
A a{b, C{}};
r2
in your first example should not compile. – Moulmeina
refers to a no-longer-existent object. – Lymph