There are multiple answers/techniques to the below question:
- How to set default values to golang structs?
- How to initialize structs in golang
I have a couple of answers but further discussion is required.
There are multiple answers/techniques to the below question:
I have a couple of answers but further discussion is required.
Force a method to get the struct (the constructor way).
From this post:
A good design is to make your type unexported, but provide an exported constructor function like
NewMyType()
in which you can properly initialize your struct / type. Also return an interface type and not a concrete type, and the interface should contain everything others want to do with your value. And your concrete type must implement that interface of course.
This can be done by simply making the type itself unexported. You can export the function NewSomething and even the fields Text and DefaultText, but just don't export the struct type something.
Another way to customize it for you own module is by using a Config struct to set default values (Option 5 in the link). Not a good way though.
NewMyType()
in which you can properly initialize your struct / type. ... you can stop worrying about improper initialization." –
Olander One possible idea is to write separate constructor function
//Something is the structure we work with
type Something struct {
Text string
DefaultText string
}
// NewSomething create new instance of Something
func NewSomething(text string) Something {
something := Something{}
something.Text = text
something.DefaultText = "default text"
return something
}
NewSomething
and even the fields Text
and DefaultText
, but just don't export the struct type something
. –
Synagogue reflect.New()
, for example), it couldn't be expected to know about your specially-named factory function. In that case, and short of the language itself being changed, only an interface (which the library could check for) would do, I think. –
Nutritious Force a method to get the struct (the constructor way).
From this post:
A good design is to make your type unexported, but provide an exported constructor function like
NewMyType()
in which you can properly initialize your struct / type. Also return an interface type and not a concrete type, and the interface should contain everything others want to do with your value. And your concrete type must implement that interface of course.
This can be done by simply making the type itself unexported. You can export the function NewSomething and even the fields Text and DefaultText, but just don't export the struct type something.
Another way to customize it for you own module is by using a Config struct to set default values (Option 5 in the link). Not a good way though.
NewMyType()
in which you can properly initialize your struct / type. ... you can stop worrying about improper initialization." –
Olander One problem with option 1 in answer from Victor Zamanian is that if the type isn't exported then users of your package can't declare it as the type for function parameters etc. One way around this would be to export an interface instead of the struct e.g.
package candidate
// Exporting interface instead of struct
type Candidate interface {}
// Struct is not exported
type candidate struct {
Name string
Votes uint32 // Defaults to 0
}
// We are forced to call the constructor to get an instance of candidate
func New(name string) Candidate {
return candidate{name, 0} // enforce the default value here
}
Which lets us declare function parameter types using the exported Candidate interface. The only disadvantage I can see from this solution is that all our methods need to be declared in the interface definition, but you could argue that that is good practice anyway.
Name
and Votes
upper-cased fields is confusing here. They might be useful for json.Marshal or similar reflect-based operations, but for normal access they are as good as lowercase fields. The interface
cannot export fields, only methods (i.e. it needs methods to be usable). –
Denudation There is a way of doing this with tags, which allows for multiple defaults.
Assume you have the following struct, with 2 default tags default0 and default1.
type A struct {
I int `default0:"3" default1:"42"`
S string `default0:"Some String..." default1:"Some Other String..."`
}
Now it's possible to Set the defaults.
func main() {
ptr := &A{}
Set(ptr, "default0")
fmt.Printf("ptr.I=%d ptr.S=%s\n", ptr.I, ptr.S)
// ptr.I=3 ptr.S=Some String...
Set(ptr, "default1")
fmt.Printf("ptr.I=%d ptr.S=%s\n", ptr.I, ptr.S)
// ptr.I=42 ptr.S=Some Other String...
}
Here's the complete program in a playground.
If you're interested in a more complex example, say with slices and maps, then, take a look at creasty/defaultse
golang
. You have a generic constructor that use reflections. A real default value would be set automatically on every new struct instance. –
Jackson What about making something like this:
// Card is the structure we work with
type Card struct {
Html js.Value
DefaultText string `default:"html"` // this only works with strings
}
// Init is the main function that initiate the structure, and return it
func (c Card) Init() Card {
c.Html = Document.Call("createElement", "div")
return c
}
Then call it as:
c := new(Card).Init()
From https://golang.org/doc/effective_go.html#composite_literals:
Sometimes the zero value isn't good enough and an initializing constructor is necessary, as in this example derived from package os.
func NewFile(fd int, name string) *File {
if fd < 0 {
return nil
}
f := new(File)
f.fd = fd
f.name = name
f.dirinfo = nil
f.nepipe = 0
return f
}
I found this thread very helpful and educational. The other answers already provide good guidance, but I wanted to summarize my takeaways with an easy to reference (i.e. copy-paste) approach:
package main
import (
"fmt"
)
// Define an interface that is exported by your package.
type Foo interface {
GetValue() string // A function that'll return the value initialized with a default.
SetValue(v string) // A function that can update the default value.
}
// Define a struct type that is not exported by your package.
type foo struct {
value string
}
// A factory method to initialize an instance of `foo`,
// the unexported struct, with a default value.
func NewFoo() Foo {
return &foo{
value: "I am the DEFAULT value.",
}
}
// Implementation of the interface's `GetValue`
// for struct `foo`.
func (f *foo) GetValue() string {
return f.value
}
// Implementation of the interface's `SetValue`
// for struct `foo`.
func (f *foo) SetValue(v string) {
f.value = v
}
func main() {
f := NewFoo()
fmt.Printf("value: `%s`\n", f.GetValue())
f.SetValue("I am the UPDATED value.")
fmt.Printf("value: `%s`\n", f.GetValue())
}
Value() string
and SetValue(string)
. See go.dev/doc/effective_go#Getters –
Tore One way to do that is:
// declare a type
type A struct {
Filed1 string
Field2 map[string]interface{}
}
So whenever you need a new variable of your custom defined type just call the NewA function also you can parameterise the function to optionally assign the values to the struct fields
func NewA() *A {
return &A{
Filed1: "",
Field2: make(map[string]interface{}),
}
}
for set default values in Go structs we use anonymous struct:
Person := struct {
name string
age int
city string
}{
name: "Peter",
age: 21,
city: "Noida",
}
fmt.Println(Person)
© 2022 - 2024 — McMap. All rights reserved.