I have a following code resulting in a table-like output
lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)),
levels = rev(lvs))
pred <- factor(
c(
rep(lvs, times = c(54, 32)),
rep(lvs, times = c(27, 231))),
levels = rev(lvs))
xtab <- table(pred, truth)
library(caret)
confusionMatrix(xtab)
confusionMatrix(pred, truth)
confusionMatrix(xtab, prevalence = 0.25)
I would like to export the below part of the output as a .csv
table
Accuracy : 0.8285
95% CI : (0.7844, 0.8668)
No Information Rate : 0.75
P-Value [Acc > NIR] : 0.0003097
Kappa : 0.5336
Mcnemar's Test P-Value : 0.6025370
Sensitivity : 0.8953
Specificity : 0.6279
Pos Pred Value : 0.8783
Neg Pred Value : 0.6667
Prevalence : 0.7500
Detection Rate : 0.6715
Detection Prevalence : 0.7645
Balanced Accuracy : 0.7616
Attempt to write it as a .csv
table results in the error message:
write.csv(confusionMatrix(xtab),file="file.csv")
Error in as.data.frame.default(x[[i]], optional = TRUE, stringsAsFactors = stringsAsFactors) :
cannot coerce class ""confusionMatrix"" to a data.frame
Doing the whole work manually, for obvious reasons, is impractical and prone to human errors.
Any suggestions on how to export it as a .csv
?
write.csv
is expecting a data.frame according to the error so you will have to massage your result into something it can take. – ScragconfusionMatrix
and put the data you require from it, into a data.frame. – Scrag