I am using LaasoCV
from sklearn
to select the best model is selected by cross-validation. I found that the cross validation gives different result if I use sklearn or matlab statistical toolbox.
I used matlab
and replicate the example given in
http://www.mathworks.se/help/stats/lasso-and-elastic-net.html
to get a figure like this
Then I saved the matlab
data, and tried to replicate the figure with laaso_path
from sklearn
, I got
Although there are some similarity between these two figures, there are also certain differences. As far as I understand parameter lambda
in matlab
and alpha
in sklearn
are same, however in this figure it seems that there are some differences. Can somebody point out which is the correct one or am I missing something? Further the coefficient obtained are also different (which is my main concern).
Matlab Code:
rng(3,'twister') % for reproducibility
X = zeros(200,5);
for ii = 1:5
X(:,ii) = exprnd(ii,200,1);
end
r = [0;2;0;-3;0];
Y = X*r + randn(200,1)*.1;
save randomData.mat % To be used in python code
[b fitinfo] = lasso(X,Y,'cv',10);
lassoPlot(b,fitinfo,'plottype','lambda','xscale','log');
disp('Lambda with min MSE')
fitinfo.LambdaMinMSE
disp('Lambda with 1SE')
fitinfo.Lambda1SE
disp('Quality of Fit')
lambdaindex = fitinfo.Index1SE;
fitinfo.MSE(lambdaindex)
disp('Number of non zero predictos')
fitinfo.DF(lambdaindex)
disp('Coefficient of fit at that lambda')
b(:,lambdaindex)
Python Code:
import scipy.io
import numpy as np
import pylab as pl
from sklearn.linear_model import lasso_path, LassoCV
data=scipy.io.loadmat('randomData.mat')
X=data['X']
Y=data['Y'].flatten()
model = LassoCV(cv=10,max_iter=1000).fit(X, Y)
print 'alpha', model.alpha_
print 'coef', model.coef_
eps = 1e-2 # the smaller it is the longer is the path
models = lasso_path(X, Y, eps=eps)
alphas_lasso = np.array([model.alpha for model in models])
coefs_lasso = np.array([model.coef_ for model in models])
pl.figure(1)
ax = pl.gca()
ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
l1 = pl.semilogx(alphas_lasso,coefs_lasso)
pl.gca().invert_xaxis()
pl.xlabel('alpha')
pl.show()