Here's a Java implementation of Peiyush Jain's algorithm:
import java.util.Arrays;
public class InShuffle {
public static void main(String[] args) {
Integer[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
inShuffle(nums);
System.out.println(Arrays.toString(nums));
}
public static <T> void inShuffle(T[] array) {
if (array == null) {
return;
}
inShuffle(array, 0, array.length - 1);
}
private static <T> void inShuffle(T[] array, int startIndex, int endIndex) {
while (endIndex - startIndex + 1 > 1) {
int size = endIndex - startIndex + 1;
int n = size / 2;
int k = (int)Math.floor(Math.log(size + 1) / Math.log(3));
int m = (int)(Math.pow(3, k) - 1) / 2;
rotateRight(array, startIndex + m, startIndex + n + m - 1, m);
for (int i = 0, cycleStartIndex = 0; i < k; ++i, cycleStartIndex = cycleStartIndex * 3 + 2) {
permuteCycle(array, startIndex, cycleStartIndex, 2 * m + 1);
}
endIndex = startIndex + 2 * n - 1;
startIndex = startIndex + 2 * m;
}
}
private static <T> void rotateRight(T[] array, int startIndex, int endIndex, int amount) {
reverse(array, startIndex, endIndex - amount);
reverse(array, endIndex - amount + 1, endIndex);
reverse(array, startIndex, endIndex);
}
private static <T> void reverse(T[] array, int startIndex, int endIndex) {
for (int leftIndex = startIndex, rightIndex = endIndex; leftIndex < rightIndex; ++leftIndex, --rightIndex) {
swap(array, leftIndex, rightIndex);
}
}
private static <T> void swap(T[] array, int index1, int index2) {
T temp = array[index1];
array[index1] = array[index2];
array[index2] = temp;
}
private static <T> void permuteCycle(T[] array, int offset, int startIndex, int mod) {
for (int i = ((2 * startIndex + 2) % mod) - 1; i != startIndex; i = ((2 * i + 2) % mod) - 1) {
swap(array, offset + i, offset + startIndex);
}
}
}
And doing an out-shuffle is as simple as:
public static <T> void outShuffle(T[] array) {
if (array == null) {
return;
}
inShuffle(array, 1, array.length - 1);
}