Is there a difference between ++x and x++ in java?
++x is called preincrement while x++ is called postincrement.
int x = 5, y = 5;
System.out.println(++x); // outputs 6
System.out.println(x); // outputs 6
System.out.println(y++); // outputs 5
System.out.println(y); // outputs 6
yes
++x increments the value of x and then returns x
x++ returns the value of x and then increments
example:
x=0;
a=++x;
b=x++;
after the code is run both a and b will be 1 but x will be 2.
These are known as postfix and prefix operators. Both will add 1 to the variable but there is a difference in the result of the statement.
int x = 0;
int y = 0;
y = ++x; // result: x=1, y=1
int x = 0;
int y = 0;
y = x++; // result: x=1, y=0
In Java there is a difference between x++ and ++x
++x is a prefix form: It increments the variables expression then uses the new value in the expression.
For example if used in code:
int x = 3;
int y = ++x;
//Using ++x in the above is a two step operation.
//The first operation is to increment x, so x = 1 + 3 = 4
//The second operation is y = x so y = 4
System.out.println(y); //It will print out '4'
System.out.println(x); //It will print out '4'
x++ is a postfix form: The variables value is first used in the expression and then it is incremented after the operation.
For example if used in code:
int x = 3;
int y = x++;
//Using x++ in the above is a two step operation.
//The first operation is y = x so y = 3
//The second operation is to increment x, so x = 1 + 3 = 4
System.out.println(y); //It will print out '3'
System.out.println(x); //It will print out '4'
Hope this is clear. Running and playing with the above code should help your understanding.
Yes,
int x=5;
System.out.println(++x);
will print 6
and
int x=5;
System.out.println(x++);
will print 5
.
I landed here from one of its recent dup's, and though this question is more than answered, I couldn't help decompiling the code and adding "yet another answer" :-)
To be accurate (and probably, a bit pedantic),
int y = 2;
y = y++;
is compiled into:
int y = 2;
int tmp = y;
y = y+1;
y = tmp;
If you javac
this Y.java
class:
public class Y {
public static void main(String []args) {
int y = 2;
y = y++;
}
}
and javap -c Y
, you get the following jvm code (I have allowed me to comment the main method with the help of the Java Virtual Machine Specification):
public class Y extends java.lang.Object{
public Y();
Code:
0: aload_0
1: invokespecial #1; //Method java/lang/Object."<init>":()V
4: return
public static void main(java.lang.String[]);
Code:
0: iconst_2 // Push int constant `2` onto the operand stack.
1: istore_1 // Pop the value on top of the operand stack (`2`) and set the
// value of the local variable at index `1` (`y`) to this value.
2: iload_1 // Push the value (`2`) of the local variable at index `1` (`y`)
// onto the operand stack
3: iinc 1, 1 // Sign-extend the constant value `1` to an int, and increment
// by this amount the local variable at index `1` (`y`)
6: istore_1 // Pop the value on top of the operand stack (`2`) and set the
// value of the local variable at index `1` (`y`) to this value.
7: return
}
Thus, we finally have:
0,1: y=2
2: tmp=y
3: y=y+1
6: y=tmp
When considering what the computer actually does...
++x: load x from memory, increment, use, store back to memory.
x++: load x from memory, use, increment, store back to memory.
Consider: a = 0 x = f(a++) y = f(++a)
where function f(p) returns p + 1
x will be 1 (or 2)
y will be 2 (or 1)
And therein lies the problem. Did the author of the compiler pass the parameter after retrieval, after use, or after storage.
Generally, just use x = x + 1. It's way simpler.
Yes.
public class IncrementTest extends TestCase {
public void testPreIncrement() throws Exception {
int i = 0;
int j = i++;
assertEquals(0, j);
assertEquals(1, i);
}
public void testPostIncrement() throws Exception {
int i = 0;
int j = ++i;
assertEquals(1, j);
assertEquals(1, i);
}
}
Yes, using ++X, X+1 will be used in the expression. Using X++, X will be used in the expression and X will only be increased after the expression has been evaluated.
So if X = 9, using ++X, the value 10 will be used, else, the value 9.
If it's like many other languages you may want to have a simple try:
i = 0;
if (0 == i++) // if true, increment happened after equality check
if (2 == ++i) // if true, increment happened before equality check
If the above doesn't happen like that, they may be equivalent
Yes, the value returned is the value after and before the incrementation, respectively.
class Foo {
public static void main(String args[]) {
int x = 1;
int a = x++;
System.out.println("a is now " + a);
x = 1;
a = ++x;
System.out.println("a is now " + a);
}
}
$ java Foo
a is now 1
a is now 2
OK, I landed here because I recently came across the same issue when checking the classic stack implementation. Just a reminder that this is used in the array based implementation of Stack, which is a bit faster than the linked-list one.
Code below, check the push and pop func.
public class FixedCapacityStackOfStrings
{
private String[] s;
private int N=0;
public FixedCapacityStackOfStrings(int capacity)
{ s = new String[capacity];}
public boolean isEmpty()
{ return N == 0;}
public void push(String item)
{ s[N++] = item; }
public String pop()
{
String item = s[--N];
s[N] = null;
return item;
}
}
Yes, there is a difference, incase of x++(postincrement), value of x will be used in the expression and x will be incremented by 1 after the expression has been evaluated, on the other hand ++x(preincrement), x+1 will be used in the expression. Take an example:
public static void main(String args[])
{
int i , j , k = 0;
j = k++; // Value of j is 0
i = ++j; // Value of i becomes 1
k = i++; // Value of k is 1
System.out.println(k);
}
The Question is already answered, but allow me to add from my side too.
First of all ++ means increment by one and -- means decrement by one.
Now x++ means Increment x after this line and ++x means Increment x before this line.
Check this Example
class Example {
public static void main (String args[]) {
int x=17,a,b;
a=x++;
b=++x;
System.out.println(“x=” + x +“a=” +a);
System.out.println(“x=” + x + “b=” +b);
a = x--;
b = --x;
System.out.println(“x=” + x + “a=” +a);
System.out.println(“x=” + x + “b=” +b);
}
}
It will give the following output:
x=19 a=17
x=19 b=19
x=18 a=19
x=17 b=17
public static void main(String[] args) {
int a = 1;
int b = a++; // this means b = whatever value a has but, I want to
increment a by 1
System.out.println("a is --> " + a); //2
System.out.println("b is --> " + b); //1
a = 1;
b = ++a; // this means b = a+1
System.out.println("now a is still --> " + a); //2
System.out.println("but b is --> " + b); //2
}
With i++, it's called postincrement, and the value is used in whatever context then incremented; ++i is preincrement increments the value first and then uses it in context.
If you're not using it in any context, it doesn't matter what you use, but postincrement is used by convention.
There is a huge difference.
As most of the answers have already pointed out the theory, I would like to point out an easy example:
int x = 1;
//would print 1 as first statement will x = x and then x will increase
int x = x++;
System.out.println(x);
Now let's see ++x
:
int x = 1;
//would print 2 as first statement will increment x and then x will be stored
int x = ++x;
System.out.println(x);
Try to look at it this way: from left to right do what you encounter first. If you see the x first, then that value is going to be used in evaluating the currently processing expression, if you see the increment (++) first, then add one to the current value of the variable and continue with the evaluation of the expression. Simple
© 2022 - 2024 — McMap. All rights reserved.
suffix
? – Painterly