Most efficient way to sort an array into bins specified by an index array?
Asked Answered
K

1

6

The task by example:

data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
idx  = np.array([2, 0, 1, 1, 2, 0, 1, 1, 2])

Expected result:

binned = np.array([2, 6, 3, 4, 7, 8, 1, 5, 9])

Constraints:

  • Should be fast.

  • Should be O(n+k) where n is the length of data and k is the number of bins.

  • Should be stable, i.e. order within bins is preserved.

Obvious solution

data[np.argsort(idx, kind='stable')]

is O(n log n).

O(n+k) solution

def sort_to_bins(idx, data, mx=-1):
    if mx==-1:
        mx = idx.max() + 1
    cnts = np.zeros(mx + 1, int)
    for i in range(idx.size):
        cnts[idx[i] + 1] += 1
    for i in range(1, cnts.size):
        cnts[i] += cnts[i-1]
    res = np.empty_like(data)
    for i in range(data.size):
        res[cnts[idx[i]]] = data[i]
        cnts[idx[i]] += 1
    return res

is loopy and slow.

Is there a better method in pure numpy < scipy < pandas < numba/pythran?

Kerek answered 18/3, 2019 at 17:11 Comment(0)
K
7

Here are a few solutions:

  1. Use np.argsort anyway, after all it is fast compiled code.

  2. Use np.bincount to get the bin sizes and np.argpartition which is O(n) for fixed number of bins. Downside: currently, no stable algorithm is available, thus we have to sort each bin.

  3. Use scipy.ndimage.measurements.labeled_comprehension. This does roughly what is required, but no idea how it is implemented.

  4. Use pandas. I'm a complete pandas noob, so what I cobbled together here using groupby may be suboptimal.

  5. Use scipy.sparse switching between compressed sparse row and compressed sparse column formats happens to implement the exact operation we are looking for.

  6. Use pythran (I'm sure numba works as well) on the loopy code in the question. All that is required is to insert at the top after numpy import

.

#pythran export sort_to_bins(int[:], float[:], int)

and then compile

# pythran stb_pthr.py

Benchmarks 100 bins, variable number of items:

enter image description here

Take home:

If you are ok with numba/pythran that is the way to go, if not scipy.sparse scales rather well.

Code:

import numpy as np
from scipy import sparse
from scipy.ndimage.measurements import labeled_comprehension
from stb_pthr import sort_to_bins as sort_to_bins_pythran
import pandas as pd

def sort_to_bins_pandas(idx, data, mx=-1):
    df = pd.DataFrame.from_dict(data=data)
    out = np.empty_like(data)
    j = 0
    for grp in df.groupby(idx).groups.values():
        out[j:j+len(grp)] = data[np.sort(grp)]
        j += len(grp)
    return out

def sort_to_bins_ndimage(idx, data, mx=-1):
    if mx==-1:
        mx = idx.max() + 1
    out = np.empty_like(data)
    j = 0
    def collect(bin):
        nonlocal j
        out[j:j+len(bin)] = np.sort(bin)
        j += len(bin)
        return 0
    labeled_comprehension(data, idx, np.arange(mx), collect, data.dtype, None)
    return out

def sort_to_bins_partition(idx, data, mx=-1):
    if mx==-1:
        mx = idx.max() + 1
    return data[np.argpartition(idx, np.bincount(idx, None, mx)[:-1].cumsum())]

def sort_to_bins_partition_stable(idx, data, mx=-1):
    if mx==-1:
        mx = idx.max() + 1
    split = np.bincount(idx, None, mx)[:-1].cumsum()
    srt = np.argpartition(idx, split)
    for bin in np.split(srt, split):
        bin.sort()
    return data[srt]

def sort_to_bins_sparse(idx, data, mx=-1):
    if mx==-1:
        mx = idx.max() + 1    
    return sparse.csr_matrix((data, idx, np.arange(len(idx)+1)), (len(idx), mx)).tocsc().data

def sort_to_bins_argsort(idx, data, mx=-1):
    return data[idx.argsort(kind='stable')]

from timeit import timeit
exmpls = [np.random.randint(0, K, (N,)) for K, N in np.c_[np.full(16, 100), 1<<np.arange(5, 21)]]

timings = {}
for idx in exmpls:
    data = np.arange(len(idx), dtype=float)
    ref = None
    for x, f in (*globals().items(),):
        if x.startswith('sort_to_bins_'):
            timings.setdefault(x.replace('sort_to_bins_', '').replace('_', ' '), []).append(timeit('f(idx, data, -1)', globals={'f':f, 'idx':idx, 'data':data}, number=10)*100)
            if x=='sort_to_bins_partition':
                continue
            if ref is None:
                ref = f(idx, data, -1)
            else:
                assert np.all(f(idx, data, -1)==ref)

import pylab
for k, v in timings.items():
    pylab.loglog(1<<np.arange(5, 21), v, label=k)
pylab.xlabel('#items')
pylab.ylabel('time [ms]')
pylab.legend()
pylab.show()
Kerek answered 18/3, 2019 at 17:11 Comment(1)
As mentioned in the post I'm not good with pandas. Better solutions especially with pandas, but also otherwise most welcome.Kerek

© 2022 - 2024 — McMap. All rights reserved.