I am using Spark MLlib 1.4.1 to create decisionTree model. Now I want to extract rules from decision tree.
How can I extract rules ?
I am using Spark MLlib 1.4.1 to create decisionTree model. Now I want to extract rules from decision tree.
How can I extract rules ?
You can get the full model as a string by calling model.toDebugString(), or save it as JSON by calling model.save(sc, filePath).
The documentation is here, which contains a example with a small sample data that you can inspect the output format in command line. Here I formatted the script that you can directly past and run.
from numpy import array
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.tree import DecisionTree
data = [
LabeledPoint(0.0, [0.0]),
LabeledPoint(1.0, [1.0]),
LabeledPoint(1.0, [2.0]),
LabeledPoint(1.0, [3.0])
]
model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {})
print(model)
print(model.toDebugString())
the output is:
DecisionTreeModel classifier of depth 1 with 3 nodes
DecisionTreeModel classifier of depth 1 with 3 nodes
If (feature 0 <= 0.0)
Predict: 0.0
Else (feature 0 > 0.0)
Predict: 1.0
In real application, the model can be very large and consists many lines. So directly use dtModel.toDebugString() can cause IPython notebook to halt. So I suggest to out put it as a text file.
Here is an example code of how to export a model dtModel to text file. Suppose we get the dtModel like this:
dtModel = DecisionTree.trainClassifier(parsedTrainData, numClasses=7, categoricalFeaturesInfo={},impurity='gini', maxDepth=20, maxBins=24)
modelFile = ~/decisionTreeModel.txt"
f = open(modelFile,"w")
f.write(dtModel.toDebugString())
f.close()
Here is an example output of the above script from my dtMmodel:
DecisionTreeModel classifier of depth 20 with 20031 nodes
If (feature 0 <= -35.0)
If (feature 24 <= 176.0)
If (feature 0 <= -200.0)
If (feature 29 <= 109.0)
If (feature 6 <= -156.0)
If (feature 9 <= 0.0)
If (feature 20 <= -116.0)
If (feature 16 <= 203.0)
If (feature 11 <= 163.0)
If (feature 5 <= 384.0)
If (feature 15 <= 325.0)
If (feature 13 <= -248.0)
If (feature 20 <= -146.0)
Predict: 0.0
Else (feature 20 > -146.0)
If (feature 19 <= -58.0)
Predict: 6.0
Else (feature 19 > -58.0)
Predict: 0.0
Else (feature 13 > -248.0)
If (feature 9 <= -26.0)
Predict: 0.0
Else (feature 9 > -26.0)
If (feature 10 <= 218.0)
...
...
...
...
import networkx as nx
Load the model data, this is present in hadoop if you have previously used model.save(location) at that location
modeldf = spark.read.parquet(location+"/data/*")
noderows = modeldf.select("id","prediction","leftChild","rightChild","split").collect()
Creating a dummy feature array
features = ["feature"+str(i) for i in range(0,700)]
Initialize the graph
G = nx.DiGraph()
for rw in noderows:
if rw['leftChild'] < 0 and rw['rightChild'] < 0:
G.add_node(rw['id'], cat="Prediction", predval=rw['prediction'])
else:
G.add_node(rw['id'], cat="splitter", featureIndex=rw['split']['featureIndex'], thresh=rw['split']['leftCategoriesOrThreshold'], leftChild=rw['leftChild'], rightChild=rw['rightChild'], numCat=rw['split']['numCategories'])
for rw in modeldf.where("leftChild > 0 and rightChild > 0").collect():
tempnode = G.nodes(data="True")[rw['id']][1]
#print(tempnode)
G.add_edge(rw['id'], rw['leftChild'], reason="{0} less than {1}".format(features[tempnode['featureIndex']],tempnode['thresh']))
G.add_edge(rw['id'], rw['rightChild'], reason="{0} greater than {1}".format(features[tempnode['featureIndex']],tempnode['thresh']))
The code above converts all the rules to a graph network. To print all the rules in if and else format, we can find path to all the leaf nodes, and list the edge reason to extract the final rules
nodes = [x for x in G.nodes() if G.out_degree(x)==0 and G.in_degree(x)==1]
for n in nodes:
p = nx.shortest_path(G,0,n)
print("Rule No:",n)
print(" & ".join([G.get_edge_data(p[i],p[i+1])['reason'] for i in range(0,len(p)-1)]))
The output looks something like this:
('Rule No:', 5)
feature457 less than [0.0] & feature353 less than [0.0] & feature185 less than [1.0] & feature294 less than [1.0] & feature367 less than [1.0]
('Rule No:', 8)
feature457 less than [0.0] & feature353 less than [0.0] & feature185 less than [1.0] & feature294 less than [1.0] & feature367 greater than [1.0] & feature318 less than [0.0] & feature385 less than [0.0]
('Rule No:', 9)
feature457 less than [0.0] & feature353 less than [0.0] & feature185 less than [1.0] & feature294 less than [1.0] & feature367 greater than [1.0] & feature318 less than [0.0] & feature385 greater than [0.0]
('Rule No:', 11)
feature457 less than [0.0] & feature353 less than [0.0] & feature185 less than [1.0] & feature294 less than [1.0] & feature367 greater than [1.0] & feature318 greater than [0.0] & feature266 less than [0.0]
('Rule No:', 12)
feature457 less than [0.0] & feature353 less than [0.0] & feature185 less than [1.0] & feature294 less than [1.0] & feature367 greater than [1.0] & feature318 greater than [0.0] & feature266 greater than [0.0]
('Rule No:', 16)
feature457 less than [0.0] & feature353 less than [0.0] & feature185 less than [1.0] & feature294 greater than [1.0] & feature158 less than [1.0] & feature274 less than [0.0] & feature89 less than [1.0]
('Rule No:', 17)
feature457 less than [0.0] & feature353 less than [0.0] & feature185 less than [1.0] & feature294 greater than [1.0] & feature158 less than [1.0] & feature274 less than [0.0] & feature89 greater than [1.0]
Modified the initial code present here
We can extract rules using model.debugString attribute. Full example is as follows:
Note : If you want details on below code, please check https://medium.com/@dipaweshpawar/decoding-decision-tree-in-pyspark-bdd98dcd1ddf
from pyspark.sql.functions import to_date,datediff,lit,udf,sum,avg,col,count,lag
from pyspark.sql.types import StringType,LongType,StructType,StructField,DateType,IntegerType,DoubleType
from datetime import datetime
from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml import Pipeline
import pandas as pd
from pyspark.sql import DataFrame
from pyspark.sql.functions import udf, lit, avg, max, min
from pyspark.sql.types import StringType, ArrayType, DoubleType
from pyspark.ml.feature import StringIndexer, VectorAssembler, StandardScaler
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.sql import SparkSession
from pyspark.ml import Pipeline
import operator
import ast
operators = {
">=": operator.ge,
"<=": operator.le,
">": operator.gt,
"<": operator.lt,
"==": operator.eq,
'and': operator.and_,
'or': operator.or_
}
data = pd.DataFrame({
'ball': [0, 1, 1, 3, 1, 0, 1, 3],
'keep': [4, 5, 6, 7, 7, 4, 6, 7],
'hall': [8, 9, 10, 11, 2, 6, 10, 11],
'fall': [12, 13, 14, 15, 15, 12, 14, 15],
'mall': [16, 17, 18, 10, 10, 16, 18, 10],
'label': [21, 31, 41, 51, 51, 51, 21, 31]
})
df = spark.createDataFrame(data)
f_list = ['ball','keep','mall','hall','fall']
assemble_numerical_features = VectorAssembler(inputCols=f_list, outputCol='features',
handleInvalid='skip')
dt = DecisionTreeClassifier(featuresCol='features', labelCol='label')
pipeline = Pipeline(stages=[assemble_numerical_features, dt])
model = pipeline.fit(df)
df = model.transform(df)
dt_m = model.stages[-1]
# Step 1: convert model.debugString output to dictionary of nodes and children
def parse_debug_string_lines(lines):
block = []
while lines:
if lines[0].startswith('If'):
bl = ' '.join(lines.pop(0).split()[1:]).replace('(', '').replace(')', '')
block.append({'name': bl, 'children': parse_debug_string_lines(lines)})
if lines[0].startswith('Else'):
be = ' '.join(lines.pop(0).split()[1:]).replace('(', '').replace(')', '')
block.append({'name': be, 'children': parse_debug_string_lines(lines)})
elif not lines[0].startswith(('If', 'Else')):
block2 = lines.pop(0)
block.append({'name': block2})
else:
break
return block
def debug_str_to_json(debug_string):
data = []
for line in debug_string.splitlines():
if line.strip():
line = line.strip()
data.append(line)
else:
break
if not line: break
json = {'name': 'Root', 'children': parse_debug_string_lines(data[1:])}
return json
# Step 2 : Using metadata stored in features column, build dictionary which maps each feature in features column of df to its index in feature vector
f_type_to_flist_dict = df.schema['features'].metadata["ml_attr"]["attrs"]
f_index_to_name_dict = {}
for f_type, f_list in f_type_to_flist_dict.items():
for f in f_list:
f_index = f['idx']
f_name = f['name']
f_index_to_name_dict[f_index] = f_name
def generate_explanations(dt_as_json, df:DataFrame, f_index_to_name_dict, operators):
dt_as_json_str = str(dt_as_json)
cond_parsing_exception_occured = False
df = df.withColumn('features'+'_list',
udf(lambda x: x.toArray().tolist(), ArrayType(DoubleType()))
(df['features'])
)
# step 3 : parse and check whether current instance follows condition in perticular node
def parse_validate_cond(cond: str, f_vector: list):
cond_parts = cond.split()
condition_f_index = int(cond_parts[1])
condition_op = cond_parts[2]
condition_value = float(cond_parts[3])
f_value = f_vector[condition_f_index]
f_name = f_index_to_name_dict[condition_f_index].replace('numerical_features_', '').replace('encoded_numeric_', '').lower()
if operators[condition_op](f_value, condition_value):
return True, f_name + ' ' + condition_op + ' ' + str(round(condition_value,2))
return False, ''
# Step 4 : extract rules for an instance in a dataframe, going through nodes in a tree where instance is satisfying the rule, finally leading to a prediction node
def extract_rule(dt_as_json_str: str, f_vector: list, rule=""):
# variable declared in outer function is read only
# in inner if not explicitly declared to be nonlocal
nonlocal cond_parsing_exception_occured
dt_as_json = ast.literal_eval(dt_as_json_str)
child_l = dt_as_json['children']
for child in child_l:
name = child['name'].strip()
if name.startswith('Predict:'):
# remove last comma
return rule[0:rule.rindex(',')]
if name.startswith('feature'):
try:
res, cond = parse_validate_cond(child['name'], f_vector)
except Exception as e:
res = False
cond_parsing_exception_occured = True
if res:
rule += cond +', '
rule = extract_rule(str(child), f_vector, rule=rule)
return rule
df = df.withColumn('explanation',
udf(lambda dt, fv:extract_rule(dt, fv) ,StringType())
(lit(dt_as_json_str), df['features'+'_list'])
)
# log exception occured while trying to parse
# condition in decision tree node
if cond_parsing_exception_occured:
print('some node in decision tree has unexpected format')
return df
df = generate_explanations(debug_str_to_json(dt_m.toDebugString), df, f_index_to_name_dict, operators)
rows = df.select(['ball','keep','mall','hall','fall','explanation','prediction']).collect()
output :
-----------------------
[Row(ball=0, keep=4, mall=16, hall=8, fall=12, explanation='hall > 7.0, mall > 13.0, ball <= 0.5', prediction=21.0),
Row(ball=1, keep=5, mall=17, hall=9, fall=13, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep <= 5.5', prediction=31.0),
Row(ball=1, keep=6, mall=18, hall=10, fall=14, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep > 5.5', prediction=21.0),
Row(ball=3, keep=7, mall=10, hall=11, fall=15, explanation='hall > 7.0, mall <= 13.0', prediction=31.0),
Row(ball=1, keep=7, mall=10, hall=2, fall=15, explanation='hall <= 7.0', prediction=51.0),
Row(ball=0, keep=4, mall=16, hall=6, fall=12, explanation='hall <= 7.0', prediction=51.0),
Row(ball=1, keep=6, mall=18, hall=10, fall=14, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep > 5.5', prediction=21.0),
Row(ball=3, keep=7, mall=10, hall=11, fall=15, explanation='hall > 7.0, mall <= 13.0', prediction=31.0)]
output of dt_m.toDebugString:
-----------------------------------
'DecisionTreeClassificationModel (uid=DecisionTreeClassifier_2a17ae7633b9) of depth 4 with 9 nodes\n If (feature 3 <= 7.0)\n Predict: 51.0\n Else (feature 3 > 7.0)\n If (feature 2 <= 13.0)\n Predict: 31.0\n Else (feature 2 > 13.0)\n If (feature 0 <= 0.5)\n Predict: 21.0\n Else (feature 0 > 0.5)\n If (feature 1 <= 5.5)\n Predict: 31.0\n Else (feature 1 > 5.5)\n Predict: 21.0\n'
output of debug_str_to_json(dt_m.toDebugString):
------------------------------------
{'name': 'Root',
'children': [{'name': 'feature 3 <= 7.0',
'children': [{'name': 'Predict: 51.0'}]},
{'name': 'feature 3 > 7.0',
'children': [{'name': 'feature 2 <= 13.0',
'children': [{'name': 'Predict: 31.0'}]},
{'name': 'feature 2 > 13.0',
'children': [{'name': 'feature 0 <= 0.5',
'children': [{'name': 'Predict: 21.0'}]},
{'name': 'feature 0 > 0.5',
'children': [{'name': 'feature 1 <= 5.5',
'children': [{'name': 'Predict: 31.0'}]},
{'name': 'feature 1 > 5.5',
'children': [{'name': 'Predict: 21.0'}]}]}]}]}]}
© 2022 - 2024 — McMap. All rights reserved.