Display rows with one or more NaN values in pandas dataframe
Asked Answered
A

6

139

I have a dataframe in which some rows contain missing values.

In [31]: df.head()
Out[31]: 
                             alpha1  alpha2    gamma1    gamma2       chi2min  
filename                                                                        
M66_MI_NSRh35d32kpoints.dat  0.8016  0.9283  1.000000  0.074804  3.985599e+01   
F71_sMI_DMRI51d.dat          0.0000  0.0000       NaN  0.000000  1.000000e+25   
F62_sMI_St22d7.dat           1.7210  3.8330  0.237480  0.150000  1.091832e+01   
F41_Car_HOC498d.dat          1.1670  2.8090  0.364190  0.300000  7.966335e+00   
F78_MI_547d.dat              1.8970  5.4590  0.095319  0.100000  2.593468e+01 

I want to display those rows on the screen. If I try df.isnull(), it gives a long dataframe with True and False. Is there any way by which I can select these rows and print them on the screen?

Anelace answered 15/4, 2017 at 9:3 Comment(0)
S
266

You can use DataFrame.any with parameter axis=1 for check at least one True in row by DataFrame.isna with boolean indexing:

df1 = df[df.isna().any(axis=1)]

d = {'filename': ['M66_MI_NSRh35d32kpoints.dat', 'F71_sMI_DMRI51d.dat', 'F62_sMI_St22d7.dat', 'F41_Car_HOC498d.dat', 'F78_MI_547d.dat'], 'alpha1': [0.8016, 0.0, 1.721, 1.167, 1.897], 'alpha2': [0.9283, 0.0, 3.833, 2.809, 5.459], 'gamma1': [1.0, np.nan, 0.23748000000000002, 0.36419, 0.095319], 'gamma2': [0.074804, 0.0, 0.15, 0.3, np.nan], 'chi2min': [39.855990000000006, 1e+25, 10.91832, 7.966335000000001, 25.93468]}
df = pd.DataFrame(d).set_index('filename')

print (df)
                             alpha1  alpha2    gamma1    gamma2       chi2min
filename                                                                     
M66_MI_NSRh35d32kpoints.dat  0.8016  0.9283  1.000000  0.074804  3.985599e+01
F71_sMI_DMRI51d.dat          0.0000  0.0000       NaN  0.000000  1.000000e+25
F62_sMI_St22d7.dat           1.7210  3.8330  0.237480  0.150000  1.091832e+01
F41_Car_HOC498d.dat          1.1670  2.8090  0.364190  0.300000  7.966335e+00
F78_MI_547d.dat              1.8970  5.4590  0.095319       NaN  2.593468e+01

Explanation:

print (df.isna())
                            alpha1 alpha2 gamma1 gamma2 chi2min
filename                                                       
M66_MI_NSRh35d32kpoints.dat  False  False  False  False   False
F71_sMI_DMRI51d.dat          False  False   True  False   False
F62_sMI_St22d7.dat           False  False  False  False   False
F41_Car_HOC498d.dat          False  False  False  False   False
F78_MI_547d.dat              False  False  False   True   False

print (df.isna().any(axis=1))
filename
M66_MI_NSRh35d32kpoints.dat    False
F71_sMI_DMRI51d.dat             True
F62_sMI_St22d7.dat             False
F41_Car_HOC498d.dat            False
F78_MI_547d.dat                 True
dtype: bool

df1 = df[df.isna().any(axis=1)]
print (df1)
                     alpha1  alpha2    gamma1  gamma2       chi2min
filename                                                           
F71_sMI_DMRI51d.dat   0.000   0.000       NaN     0.0  1.000000e+25
F78_MI_547d.dat       1.897   5.459  0.095319     NaN  2.593468e+01
Sikata answered 15/4, 2017 at 9:5 Comment(4)
axis : {0 or ‘index’, 1 or ‘columns’}, or tuple/list thereof Pass tuple or list to drop on multiple axesTownsend
Suppose you want to apply isnull() to some columns only?Augite
df[df['gamma1','gamma2'].isna().any(axis=1)] or for one column it is df[df['gamma1'].isna()]. The idea is same regardless of whether we check for null values in entire dataframe or few columns. we get boolean series after applying isna() which is used for boolean indexing.Glendoraglendower
An important note: if you are trying to just access rows with NaN values (and do not want to access rows which contain nulls but not NaNs), this doesn't work - isna() will retrieve both. This is especially applicable when your dataframe is composed of numbers alongside other object types, such as strings.Hebraism
T
20

Use df[df.isnull().any(axis=1)] for python 3.6 or above.

Talented answered 17/12, 2019 at 10:11 Comment(0)
L
6

df.isna().any() returns the columns status for nan values. Hence, a better way to observe and analyze the nan values would be:

df.loc[:, df.isna().any()]

example

Lake answered 29/8, 2021 at 5:9 Comment(0)
I
5

Suppose gamma1 and gamma2 are two such columns for which df.isnull().any() gives True value , the following code can be used to print the rows.

bool1 = pd.isnull(df['gamma1'])
bool2 = pd.isnull(df['gamma2'])
df[bool1]
df[bool2]
Inescutcheon answered 6/2, 2020 at 15:55 Comment(1)
I also like pd.isna(df['gamma1']) 👍👍Conundrum
E
3

Can try this too, almost similar previous answers.

    d = {'filename': ['M66_MI_NSRh35d32kpoints.dat', 'F71_sMI_DMRI51d.dat', 'F62_sMI_St22d7.dat', 'F41_Car_HOC498d.dat', 'F78_MI_547d.dat'], 'alpha1': [0.8016, 0.0, 1.721, 1.167, 1.897], 'alpha2': [0.9283, 0.0, 3.833, 2.809, 5.459], 'gamma1': [1.0, np.nan, 0.23748000000000002, 0.36419, 0.095319], 'gamma2': [0.074804, 0.0, 0.15, 0.3, np.nan], 'chi2min': [39.855990000000006, 1e+25, 10.91832, 7.966335000000001, 25.93468]}
    df = pd.DataFrame(d).set_index('filename')

enter image description here

Count of null values in each column.

df.isnull().sum()

enter image description here

df.isnull().any(axis=1)

enter image description here

Eliott answered 18/8, 2020 at 14:4 Comment(0)
A
0

As the display is already viewed above, next step could be drop the nan records, you could follow the below snippet.

df = df.dropna()
Afra answered 25/3, 2024 at 8:8 Comment(0)

© 2022 - 2025 — McMap. All rights reserved.