Exception Handling in Apache Beam pipelines using Python
Asked Answered
A

2

11

I'm doing a simple pipeline using Apache Beam in python (on GCP Dataflow) to read from PubSub and write on Big Query but can't handle exceptions on pipeline to create alternatives flows.

On a simple WriteToBigQuery example:

output = json_output | 'Write to BigQuery' >> beam.io.WriteToBigQuery('some-project:dataset.table_name')

I tried to put this inside a try/except code, but it doesnt work because when it fails, exceptions seems to be throwed on a Java layer outside my python execution:

INFO:root:2019-01-29T15:49:46.516Z: JOB_MESSAGE_ERROR: java.util.concurrent.ExecutionException: java.lang.RuntimeException: Error received from SDK harness for instruction -87: Traceback (most recent call last):
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 135, in _execute
    response = task()
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 170, in <lambda>
    self._execute(lambda: worker.do_instruction(work), work)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 221, in do_instruction
    request.instruction_id)
...
...
...
    self.signature.finish_bundle_method.method_value())
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/gcp/bigquery.py", line 1368, in finish_bundle
    self._flush_batch()
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/gcp/bigquery.py", line 1380, in _flush_batch
    self.table_id, errors))
RuntimeError: Could not successfully insert rows to BigQuery table [<myproject:datasetname.tablename>]. Errors: [<InsertErrorsValueListEntry
 errors: [<ErrorProto
 debugInfo: u''
 location: u''
 message: u'Missing required field: object.teste.'
 reason: u'invalid'>]
 index: 0>] [while running 'generatedPtransform-63']

        java.util.concurrent.CompletableFuture.reportGet(CompletableFuture.java:357)
        java.util.concurrent.CompletableFuture.get(CompletableFuture.java:1895)
        org.apache.beam.sdk.util.MoreFutures.get(MoreFutures.java:57)
        org.apache.beam.runners.dataflow.worker.fn.control.RegisterAndProcessBundleOperation.finish(RegisterAndProcessBundleOperation.java:276)
        org.apache.beam.runners.dataflow.worker.util.common.worker.MapTaskExecutor.execute(MapTaskExecutor.java:84)
        org.apache.beam.runners.dataflow.worker.fn.control.BeamFnMapTaskExecutor.execute(BeamFnMapTaskExecutor.java:119)
        org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.process(StreamingDataflowWorker.java:1228)
        org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.access$1000(StreamingDataflowWorker.java:143)
        org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker$6.run(StreamingDataflowWorker.java:967)
        java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: Error received from SDK harness for instruction -87: Traceback (most recent call last):
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 135, in _execute
    response = task()
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 170, in <lambda>
    self._execute(lambda: worker.do_instruction(work), work)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 221, in do_instruction
    request.instruction_id)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 237, in process_bundle
    bundle_processor.process_bundle(instruction_id)
...
...
...
    self.signature.finish_bundle_method.method_value())
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/gcp/bigquery.py", line 1368, in finish_bundle
    self._flush_batch()
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/gcp/bigquery.py", line 1380, in _flush_batch
    self.table_id, errors))

Even trying to handle this:

RuntimeError: Could not successfully insert rows to BigQuery table [<myproject:datasetname.tablename>]. Errors: [<InsertErrorsValueListEntry
 errors: [<ErrorProto
 debugInfo: u''
 location: u''
 message: u'Missing required field: object.teste.'
 reason: u'invalid'>]
 index: 0>] [while running 'generatedPtransform-63']

Using:

try:
 ...
except RuntimeException as e:
 ...

Or using generic Exception didn't work.

I could find a lot of examples of errors handling in Apache Beam using Java, but no one in python handling errors.

Does anyone knows how to got this?

Aesthetic answered 29/1, 2019 at 17:0 Comment(0)
S
8

I've been only able to catch exceptions at the DoFn level, so something like this:

class MyPipelineStep(beam.DoFn):

    def process(self, element, *args, **kwargs):
        try:
            # do stuff...
            yield pvalue.TaggedOutput('main_output', output_element)
        except Exception as e:
            yield pvalue.TaggedOutput('exception', str(e))

However WriteToBigQuery is PTransform that wraps the DoFn BigQueryWriteFn

So you may need to do something like this

class MyBigQueryWriteFn(BigQueryWriteFn):

    def process(self, *args, **kwargs):
        try:
            return super(BigQueryWriteFn, self).process(*args, **kwargs)
        except Exception as e:
            # Do something here

class MyWriteToBigQuery(WriteToBigQuery):
    # Copy the source code of `WriteToBigQuery` here, 
    # but replace `BigQueryWriteFn` with `MyBigQueryWriteFn`

https://beam.apache.org/releases/pydoc/2.9.0/_modules/apache_beam/io/gcp/bigquery.html#WriteToBigQuery

Schismatic answered 29/1, 2019 at 22:33 Comment(0)
F
1

You can also use the generator flavor of FlatMap:

This is similar to the other answer, in that you can use a DoFn in the place of something else, e.g. a CombineFn to produce no outputs when there is an exception or other kind of failed-preconditions.

def sum_values(values: List[int]) -> Generator[int, None, None]:
    if not values or len(values) < 10:
        logging.error(f'received invalid inputs: {...}')
        return
    yield sum(values)


# Now instead of use |CombinePerKey|
(inputs
  | 'WithKey' >> beam.Map(lambda x: (x.key, x)) \
  | 'GroupByKey' >> beam.GroupByKey() \
  | 'Values' >> beam.Values() \
  | 'MaybeSum' >> beam.FlatMap(sum_values))
Freer answered 26/5, 2020 at 0:2 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.