I had the same issue and found a solution by creating a subclass of InputDStream class. It is necessary to define start()
and compute()
methods.
start()
can be used for preparation. The main logic resides in compute()
. It shall return Option[RDD[T]]
.
To make the class flexible, InputStreamQuery
trait is defined.
trait InputStreamQuery[T] {
// where clause condition for partition key
def partitionCond : (String, Any)
// function to return next partition key
def nextValue(v:Any) : Option[Any]
// where clause condition for clustering key
def whereCond : (String, (T) => Any)
// batch size
def batchSize : Int
}
For the Cassandra table keyspace.test
, create test_by_date
which reorganizes the table by the partitioning key date
.
CREATE TABLE IF NOT exists keyspace.test
(id timeuuid, date text, value text, primary key (id))
CREATE MATERIALIZED VIEW IF NOT exists keyspace.test_by_date AS
SELECT *
FROM keyspace.test
WHERE id IS NOT NULL
PRIMARY KEY (date, id)
WITH CLUSTERING ORDER BY ( id ASC );
One possible implementation for test
table shall be
class class Test(id:UUID, date:String, value:String)
trait InputStreamQueryTest extends InputStreamQuery[Test] {
val dateFormat = "uuuu-MM-dd"
// set batch size as 10 records
override def batchSize: Int = 10
// partitioning key conditions, query string and initial value
override def partitionCond: (String, Any) = ("date = ?", "2017-10-01")
// clustering key condition, query string and function to get clustering key from the instance
override def whereCond: (String, Test => Any) = (" id > ?", m => m.id)
// return next value of clustering key. ex) '2017-10-02' for input value '2017-10-01'
override def nextValue(v: Any): Option[Any] = {
import java.time.format.DateTimeFormatter
val formatter = DateTimeFormatter.ofPattern( dateFormat)
val nextDate = LocalDate.parse(v.asInstanceOf[String], formatter).plusDays(1)
if ( nextDate.isAfter( LocalDate.now()) ) None
else Some( nextDate.format(formatter))
}
}
It can be used in the CassandraInputStream
class as follows.
class CassandraInputStream[T: ClassTag]
(_ssc: StreamingContext, keyspace:String, table:String)
(implicit rrf: RowReaderFactory[T], ev: ValidRDDType[T])
extends InputDStream[T](_ssc) with InputStreamQuery[T] {
var lastElm:Option[T] = None
var partitionKey : Any = _
override def start(): Unit = {
// find a partition key which stores some records
def findStartValue(cql : String, value:Any): Any = {
val rdd = _ssc.sparkContext.cassandraTable[T](keyspace, table).where(cql, value).limit(1)
if (rdd.cassandraCount() > 0 ) value
else {
nextValue(value).map( findStartValue( cql, _)).getOrElse( value)
}
}
// get query string and initial value from partitionCond method
val (cql, value) = partitionCond
partitionKey = findStartValue(cql, value)
}
override def stop(): Unit = {}
override def compute(validTime: Time): Option[RDD[T]] = {
val (cql, _) = partitionCond
val (wh, whKey) = whereCond
def fetchNext( patKey: Any) : Option[CassandraTableScanRDD[T]] = {
// query with partitioning condition
val query = _ssc.sparkContext.cassandraTable[T](keyspace, table).where( cql, patKey)
val rdd = lastElm.map{ x =>
query.where( wh, whKey(x)).withAscOrder.limit(batchSize)
}.getOrElse( query.withAscOrder.limit(batchSize))
if ( rdd.cassandraCount() > 0 ) {
// store the last element of this RDD
lastElm = Some(rdd.collect.last)
Some(rdd)
}
else {
// find the next partition key which stores data
nextValue(patKey).flatMap{ k =>
partitionKey = k
fetchNext(k)}
}
}
fetchNext( partitionKey)
}
}
Combining all the classes,
val conf = new SparkConf().setAppName(appName).setMaster(master)
val ssc = new StreamingContext(conf, Seconds(10))
val dstream = new CassandraInputStream[Test](ssc, "keyspace", "test_by_date") with InputStreamQueryTest
dstream.map(println).saveToCassandra( ... )
ssc.start()
ssc.awaitTermination()