Following this wikipedia article SQL join I wanted to have a clear view on how we could have joins with data.table. In the process we might have uncovered a bug when joining with NAs. Taking the wiki example:
R) X = data.table(name=c("Raf","Jon","Ste","Rob","Smi","Joh"),depID=c(31,33,33,34,34,NA),key="depID")
R) Y = data.table(depID=c(31,33,34,35),depName=c("Sal","Eng","Cle","Mar"),key="depID")
R) X
name depID
1: Joh NA
2: Raf 31
3: Jon 33
4: Ste 33
5: Rob 34
6: Smi 34
R) Y
depID depName
1: 31 Sal
2: 33 Eng
3: 34 Cle
4: 35 Mar
LEFT OUTER JOIN
R) merge.data.frame(X,Y,all.x=TRUE)
depID name depName
1 31 Raf Sal
2 33 Jon Eng
3 33 Ste Eng
4 34 Rob Cle
5 34 Smi Cle
6 NA Joh <NA>
merge.data.table
do not output the same result and show what I think is a bug on lign 2.
R) merge(X,Y,all.x=TRUE)
depID name depName
1: NA Joh Eng
2: 31 Raf NA
3: 33 Jon Eng
4: 33 Ste Eng
5: 34 Rob Cle
6: 34 Smi Cle
R) Y[X] #same -> :(
depID depName name
1: NA Eng Joh
2: 31 NA Raf
3: 33 Eng Jon
4: 33 Eng Ste
5: 34 Cle Rob
6: 34 Cle Smi
RIGHT OUTER JOIN Looks like the same
R) merge.data.frame(X,Y,all.y=TRUE)
depID name depName
1 31 Raf Sal
2 33 Jon Eng
3 33 Ste Eng
4 34 Rob Cle
5 34 Smi Cle
6 35 <NA> Mar
R) merge(X,Y,all.y=TRUE)
depID name depName
1: NA Joh Eng
2: 31 NA Sal
3: 33 Jon Eng
4: 33 Ste Eng
5: 34 Rob Cle
6: 34 Smi Cle
7: 35 NA Mar
INNER (NATURAL) JOIN
R) merge.data.frame(X,Y)
depID name depName
1 31 Raf Sal
2 33 Jon Eng
3 33 Ste Eng
4 34 Rob Cle
5 34 Smi Cle
R) merge(X,Y)
depID name depName
1: NA Joh Eng
2: 33 Jon Eng
3: 33 Ste Eng
4: 34 Rob Cle
5: 34 Smi Cle