So I'm trying to write the Discrete Fourier Transform in C to work with real 32-bit float wav files. It reads in 2 frames at a time (one for each channel, but for my purposes I'm assuming they are both the same and so I use frame[0]). This code is supposed to write out the amplitude spectrum for an input file by probing it with frequencies 20,40,60,...,10000. I am using a Hanning window on the input frames. I want to avoid using complex numbers if I can. When I run this, it gives me some very strange amplitudes (most of which are extremely small, and are not associated with the correct frequencies), which makes me believe I am making a fundamental mistake in my computation. Can somebody offer some insight into what is happening here? Here is my code:
int windowSize = 2205;
int probe[500];
float hann[2205];
int j, n;
// initialize probes to 20,40,60,...,10000
for (j=0; j< len(probe); j++) {
probe[j] = j*20 + 20;
fprintf(f, "%d\n", probe[j]);
}
fprintf(f, "-1\n");
// setup the Hann window
for (n=0; n< len(hann); n++) {
hann[n] = 0.5*(cos((2*M_PI*n/(float)windowSize) + M_PI))+0.5;
}
float angle = 0.0;
float w = 0.0; // windowed sample
float realSum[len(probe)]; // stores the real part of the probe[j] within a window
float imagSum[len(probe)]; // stores the imaginary part of probe[j] within window
float mag[len(probe)]; // stores the calculated amplitude of probe[j] within a window
for (j=0; j<len(probe);j++) {
realSum[j] = 0.0;
imagSum[j] = 0.0;
mag[j] = 0.0;
}
n=0; //count number of samples within current window
framesread = psf_sndReadFloatFrames(ifd,frame,1);
totalread = 0;
while (framesread == 1){
totalread++;
// window the frame with hann value at current sample
w = frame[0]*hann[n];
// determine both real and imag product values at sample n for all probe freqs times the windowed signal
for (j=0; j<len(probe);j++) {
angle = (2.0 * M_PI * probe[j] * n) / windowSize;
realSum[j] = realSum[j] + (w * cos(angle));
imagSum[j] = imagSum[j] + (w * sin(angle));
}
n++;
// checks to see if current window has ended
if (totalread % windowSize == 0) {
fprintf(f, "B(%f)\n", totalread/44100.0);
printf("%f breakpoint written\n", totalread/44100.0);
for (j=0; j < len(mag); j++) { // print out the amplitudes
realSum[j] = realSum[j]/windowSize;
imagSum[j] = imagSum[j]/windowSize;
mag[j] = sqrt(pow((double)realSum[j],2)+pow((double)imagSum[j],2))/windowSize;
fprintf(f, "%d\t%f\n", probe[j], mag[j]);
realSum[j] = 0.0;
imagSum[j] = 0.0;
}
n=0;
}
framesread = psf_sndReadFloatFrames(ifd,frame,1);
}
double
instead offloat
if memory is not an issue, sincedouble
is much much faster thanfloat
, and don't usepow(a,2)
but instead use (a*a).pow
uses calls to the very expensive exponential function, which is unnecessary if you are just doing squaring. – Expedition