what is the most significant decimal digits precision that can be
converted to binary and back to decimal without loss of significance?
The most significant decimal digits precision that can be converted to binary and back to decimal without loss of significance (for single-precision floating-point numbers or 24-bits) is 6 decimal digits.
Why do these two numbers differ...
The numbers 6 and 7.225 differ, because they define two different things. 6 is the most decimal digits that can be round-tripped. 7.225 is the approximate number of decimal digits precision for a 24-bit binary integer because a 24-bit binary integer can have 7 or 8 decimal digits depending on its specific value.
7.225 was found using the specific binary integer formula.
dspec = b·log10(2) (dspec
= specific decimal digits, b = bits)
However, what you normally need to know, are the minimum and maximum decimal digits for a b-bit integer. The following formulas are used to find the min and max decimal digits (7 and 8 respectively for 24-bits) of a specific binary integer.
dmin = ⌈(b-1)·log10(2)⌉ (dmin
= min decimal digits, b = bits, ⌈x⌉ = smallest integer ≥ x)
dmax = ⌈b·log10(2)⌉ (dmax
= max decimal digits, b = bits, ⌈x⌉ = smallest integer ≥ x)
To learn more about how these formulas are derived, read Number of Decimal Digits In a Binary Integer, written by Rick Regan.
This is all well and good, but you may ask, why is 6 the most decimal digits for a round-trip conversion if you say that the span of decimal digits for a 24-bit number is 7 to 8?
The answer is — because the above formulas only work for integers and not floating-point numbers!
Every decimal integer has an exact value in binary. However, the same cannot be said for every decimal floating-point number. Take .1
for example. .1
in binary is the number 0.000110011001100...
, which is a repeating or recurring binary. This can produce rounding error.
Moreover, it takes one more bit to represent a decimal floating-point number than it does to represent a decimal integer of equal significance. This is because floating-point numbers are more precise the closer they are to 0, and less precise the further they are from 0. Because of this, many floating-point numbers near the minimum and maximum value ranges (emin = -126 and emax = +127 for single-precision) lose 1 bit of precision due to rounding error. To see this visually, look at What every computer programmer should know about floating point, part 1, written by Josh Haberman.
Furthermore, there are at least 784,757
positive seven-digit decimal numbers that cannot retain their original value after a round-trip conversion. An example of such a number that cannot survive the round-trip is 8.589973e9
. This is the smallest positive number that does not retain its original value.
Here's the formula that you should be using for floating-point number precision that will give you 6 decimal digits for round-trip conversion.
dmax = ⌊(b-1)·log10(2)⌋ (dmax
= max decimal digits, b = bits, ⌊x⌋ = largest integer ≤ x)
To learn more about how this formula is derived, read Number of Digits Required For Round-Trip Conversions, also written by Rick Regan. Rick does an excellent job showing the formulas derivation with references to rigorous proofs.
As a result, you can utilize the above formulas in a constructive way; if you understand how they work, you can apply them to any programming language that uses floating-point data types. All you have to know is the number of significant bits that your floating-point data type has, and you can find their respective number of decimal digits that you can count on to have no loss of significance after a round-trip conversion.
June 18, 2017 Update: I want to include a link to Rick Regan's new article which goes into more detail and in my opinion better answers this question than any answer provided here. His article is "Decimal Precision of Binary Floating-Point Numbers" and can be found on his website www.exploringbinary.com.
FLT_DIG
) aren't the same. You seem to have asked various question regarding both, nice work, thanks! – Petrous