If you use dill
, it enables you to treat __main__
as if it were a python module (for the most part). Hence, you can serialize interactively defined classes, and the like. dill
also (by default) can transport the class definition as part of the pickle.
>>> class MyTest(object):
... def foo(self, x):
... return self.x * x
... x = 4
...
>>> f = MyTest()
>>> import dill
>>>
>>> with open('test.pkl', 'wb') as s:
... dill.dump(f, s)
...
>>>
Then shut down the interpreter, and send the file test.pkl
over TCP. On your remote machine, now you can get the class instance.
Python 2.7.9 (default, Dec 11 2014, 01:21:43)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import dill
>>> with open('test.pkl', 'rb') as s:
... f = dill.load(s)
...
>>> f
<__main__.MyTest object at 0x1069348d0>
>>> f.x
4
>>> f.foo(2)
8
>>>
But how to get the class definition? So this is not exactly what you wanted. The following is, however.
>>> class MyTest2(object):
... def bar(self, x):
... return x*x + self.x
... x = 1
...
>>> import dill
>>> with open('test2.pkl', 'wb') as s:
... dill.dump(MyTest2, s)
...
>>>
Then after sending the file… you can get the class definition.
Python 2.7.9 (default, Dec 11 2014, 01:21:43)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import dill
>>> with open('test2.pkl', 'rb') as s:
... MyTest2 = dill.load(s)
...
>>> print dill.source.getsource(MyTest2)
class MyTest2(object):
def bar(self, x):
return x*x + self.x
x = 1
>>> f = MyTest2()
>>> f.x
1
>>> f.bar(4)
17
So, within dill
, there's dill.source
, and that has methods that can detect dependencies of functions and classes, and take them along with the pickle (for the most part).
>>> def foo(x):
... return x*x
...
>>> class Bar(object):
... def zap(self, x):
... return foo(x) * self.x
... x = 3
...
>>> print dill.source.importable(Bar.zap, source=True)
def foo(x):
return x*x
def zap(self, x):
return foo(x) * self.x
So that's not "perfect" (or maybe not what's expected)… but it does serialize the code for a dynamically built method and it's dependencies. You just don't get the rest of the class -- but the rest of the class is not needed in this case.
If you wanted to get everything, you could just pickle the entire session.
>>> import dill
>>> def foo(x):
... return x*x
...
>>> class Blah(object):
... def bar(self, x):
... self.x = (lambda x:foo(x)+self.x)(x)
... x = 2
...
>>> b = Blah()
>>> b.x
2
>>> b.bar(3)
>>> b.x
11
>>> dill.dump_session('foo.pkl')
>>>
Then on the remote machine...
Python 2.7.9 (default, Dec 11 2014, 01:21:43)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import dill
>>> dill.load_session('foo.pkl')
>>> b.x
11
>>> b.bar(2)
>>> b.x
15
>>> foo(3)
9
Lastly, if you want the transport to be "done" for you transparently, you could use pathos.pp
or ppft
, which provide the ability to ship objects to a second python server (on a remote machine) or python process. They use dill
under the hood, and just pass the code across the wire.
>>> class More(object):
... def squared(self, x):
... return x*x
...
>>> import pathos
>>>
>>> p = pathos.pp.ParallelPythonPool(servers=('localhost,1234',))
>>>
>>> m = More()
>>> p.map(m.squared, range(5))
[0, 1, 4, 9, 16]
The servers
argument is optional, and here is just connecting to the local machine on port 1234
… but if you use the remote machine name and port instead (or as well), you'll fire off to the remote machine -- "effortlessly".
Get dill
, pathos
, and ppft
here: https://github.com/uqfoundation