I have two GMMs that I used to fit two different sets of data in the same space, and I would like to calculate the KL-divergence between them.
Currently I am using the GMMs defined in sklearn (http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GMM.html) and the SciPy implementation of KL-divergence (http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.entropy.html)
How would I go about doing this? Do I want to just create tons of random points, get their probabilities on each of the two models (call them P and Q) and then use those probabilities as my input? Or is there some more canonical way to do this within the SciPy/SKLearn environment?