If you control the creation of the Threads (submission to an ExecutorService) then it appears you can use an ExecutorCompletionService
see ExecutorCompletionService? Why do need one if we have invokeAll? for various answers there.
If you don't control thread creation, here is an approach that allows you to join the threads "one by one as they finish" (and know which one finishes first, etc.), inspired by the ruby ThreadWait class.
Basically by newing up "watching threads" which alert when the other threads terminate, you can know when the "next" thread out of many terminates.
You'd use it something like this:
JoinThreads join = new JoinThreads(threads);
for(int i = 0; i < threads.size(); i++) {
Thread justJoined = join.joinNextThread();
System.out.println("Done with a thread, just joined=" + justJoined);
}
And the source:
public static class JoinThreads {
java.util.concurrent.LinkedBlockingQueue<Thread> doneThreads =
new LinkedBlockingQueue<Thread>();
public JoinThreads(List<Thread> threads) {
for(Thread t : threads) {
final Thread joinThis = t;
new Thread(new Runnable() {
@Override
public void run() {
try {
joinThis.join();
doneThreads.add(joinThis);
}
catch (InterruptedException e) {
// "should" never get here, since we control this thread and don't call interrupt on it
}
}
}).start();
}
}
Thread joinNextThread() throws InterruptedException {
return doneThreads.take();
}
}
The nice part of this is that it works with generic Java threads, without modification, any thread can be joined. The caveat is it requires some extra thread creation. Also this particular implementation "leaves threads behind" if you don't call joinNextThread() the full number of times, and doesn't have an "close" method, etc. Comment here if you'd like a more polished version created. You could also use this same type of pattern with "Futures" instead of Thread objects, etc.