What is the simplest/cleanest way to implement the singleton pattern in JavaScript?
I think the easiest way is to declare a simple object literal:
var myInstance = {
method1: function () {
// ...
},
method2: function () {
// ...
}
};
If you want private members on your singleton instance, you can do something like this:
var myInstance = (function() {
var privateVar = '';
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// All private members are accessible here
},
publicMethod2: function () {
}
};
})();
This has been called the module pattern, and it basically allows you to encapsulate private members on an object, by taking advantage of the use of closures.
If you want to prevent the modification of the singleton object, you can freeze it, using the ES5 Object.freeze
method.
That will make the object immutable, preventing any modification to the its structure and values.
If you are using ES6, you can represent a singleton using ES Modules very easily, and you can even hold private state by declaring variables at the module scope:
// my-singleton.js
const somePrivateState = []
function privateFn () {
// ...
}
export default {
method1() {
// ...
},
method2() {
// ...
}
}
Then you can simply import the singleton object to use it:
import myInstance from './my-singleton.js'
// ...
publicMethod1
call publicMethod2
? –
Arapaho getInstance
method, and a private constructor-, but IMO, this is the most "simple" way to build a singleton object in Javascript, and at the end it meets the same purpose -a single object, that you can't initialize again (there's no constructor, it's just an object)-. About the code you linked, it has some problems, swap the a
and b
variable declarations and test a === window
. Cheers. –
Beauchamp class
keyword than it was back in 2013 when I took issue with it. –
Kone private
functions by prepending a _
before it. Since the js module pattern doesn't actually offer private
declarations as we would expect in a true class, function _myPrivateMethod()
is a helpful visual cue when reviewing code to easily notate our public from private functions/methods. Inarguably this is not a 'standard' and certainly more preference, but it has become increasingly common, and I think it's helpful. shrug –
Concentrated I think the cleanest approach is something like:
var SingletonFactory = (function(){
function SingletonClass() {
//do stuff
}
var instance;
return {
getInstance: function(){
if (instance == null) {
instance = new SingletonClass();
// Hide the constructor so the returned object can't be new'd...
instance.constructor = null;
}
return instance;
}
};
})();
Afterwards, you can invoke the function as
var test = SingletonFactory.getInstance();
delete instance.constructor
: x = SingletonClass.getInstance();delete x.constructor;new x.constructor;
–
Nauplius this.name = ...
"hack". –
Markettamarkey In ES6 the right way to do this is:
class MyClass {
constructor() {
if (MyClass._instance) {
throw new Error("Singleton classes can't be instantiated more than once.")
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass() // Executes succesfully
var instanceTwo = new MyClass() // Throws error
Or, if you don't want an error to be thrown on the second instance creation, you can just return the last instance, like so:
class MyClass {
constructor() {
if (MyClass._instance) {
return MyClass._instance
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass()
var instanceTwo = new MyClass()
console.log(instanceOne === instanceTwo) // Logs "true"
instance
and _instance
. It's just a naming convention in programming languages that we name private variables prepended with an underscore. I suspect the reason for your code to not work is that you are using this.instance
instead of MyClass.instance
–
Hoelscher static #instance = null;
. Otherwise, one can just modify the _instance
property (set it to null
) to create a second instance. –
Ecumenicism static getInstance()
method? Or how do you use this implementation? –
Hungry static #instance = null;
it appears that was only recently added - in ES2022. –
Dentoid I'm not sure I agree with the module pattern being used as a replacement for a singleton pattern. I've often seen singletons used and abused in places where they're wholly unnecessary, and I'm sure the module pattern fills many gaps where programmers would otherwise use a singleton. However, the module pattern is not a singleton.
Module pattern:
var foo = (function () {
"use strict";
function aPrivateFunction() {}
return { aPublicFunction: function () {...}, ... };
}());
Everything initialized in the module pattern happens when Foo
is declared. Additionally, the module pattern can be used to initialize a constructor, which could then be instantiated multiple times. While the module pattern is the right tool for many jobs, it's not equivalent to a singleton.
Singleton pattern:
short formvar Foo = function () {
"use strict";
if (Foo._instance) {
// This allows the constructor to be called multiple times
// and refer to the same instance. Another option is to
// throw an error.
return Foo._instance;
}
Foo._instance = this;
// Foo initialization code
};
Foo.getInstance = function () {
"use strict";
return Foo._instance || new Foo();
}
long form, using module pattern
var Foo = (function () {
"use strict";
var instance; //prevent modification of "instance" variable
function Singleton() {
if (instance) {
return instance;
}
instance = this;
//Singleton initialization code
}
// Instance accessor
Singleton.getInstance = function () {
return instance || new Singleton();
}
return Singleton;
}());
In both versions of the singleton pattern that I've provided, the constructor itself can be used as the accessor:
var a,
b;
a = new Foo(); // Constructor initialization happens here
b = new Foo();
console.log(a === b); //true
If you don't feel comfortable using the constructor this way, you can throw an error in the if (instance)
statement, and stick to using the long form:
var a,
b;
a = Foo.getInstance(); // Constructor initialization happens here
b = Foo.getInstance();
console.log(a === b); // true
I should also mention that the singleton pattern fits well with the implicit constructor function pattern:
function Foo() {
if (Foo._instance) {
return Foo._instance;
}
// If the function wasn't called as a constructor,
// call it as a constructor and return the result
if (!(this instanceof Foo)) {
return new Foo();
}
Foo._instance = this;
}
var f = new Foo(); // Calls Foo as a constructor
-or-
var f = Foo(); // Also calls Foo as a constructor
var singleton = {}
is just an object instance, and is not a singleton. Certainly you could dynamically add properties to make the object suitably unique, but that doesn't make it a singleton, because the instance is of the Object
"class", and you'd be able to create more than one. –
Xanthe var singleton = {}
does not fit that definition. –
Xanthe var singleton = {}
is how you implement singleton in Javascript. –
Monopteros In ECMAScript 2015 (ES6):
class Singleton {
constructor () {
if (!Singleton.instance) {
Singleton.instance = this
}
// Initialize object
return Singleton.instance
}
// Properties & Methods
}
const instance = new Singleton()
Object.freeze(instance)
export default instance
instance
field. As it is currently (instance
set to this
) this class might have other fields as well and freezing doesn't make sense imo. –
Lanthorn If you're using node.JS
then you can take advantage of node.JS caching mechanism and your Singleton
will be as simple as:
class Singleton {
constructor() {
this.message = 'I am an instance';
}
}
module.exports = new Singleton();
Please note that we export not the class Singleton
but instance Singleton()
.
Node.JS will cache and reuse the same object each time it’s required.
For more details please check: Node.JS and Singleton Pattern
The following works in Node.js version 6:
class Foo {
constructor(msg) {
if (Foo.singleton) {
return Foo.singleton;
}
this.msg = msg;
Foo.singleton = this;
return Foo.singleton;
}
}
We test:
const f = new Foo('blah');
const d = new Foo('nope');
console.log(f); // => Foo { msg: 'blah' }
console.log(d); // => Foo { msg: 'blah' }
The simplest/cleanest for me means also simply to understand and no bells & whistles as are much discussed in the Java version of the discussion:
What is an efficient way to implement a singleton pattern in Java?
The answer that would fit simplest/cleanest best there from my point of view is:
Jonathan's answer to What is an efficient way to implement a singleton pattern in Java?
And it can only partly be translated to JavaScript. Some of the difference in JavaScript are:
- constructors can't be private
- Classes can't have declared fields
But given the latest ECMA syntax, it is possible to get close with:
Singleton pattern as a JavaScript class example
class Singleton {
constructor(field1,field2) {
this.field1=field1;
this.field2=field2;
Singleton.instance=this;
}
static getInstance() {
if (!Singleton.instance) {
Singleton.instance=new Singleton('DefaultField1','DefaultField2');
}
return Singleton.instance;
}
}
Example Usage
console.log(Singleton.getInstance().field1);
console.log(Singleton.getInstance().field2);
Example Result
DefaultField1
DefaultField2
new Singleton()
and by so the Singleton pattern is broken –
Maidy If you want to use classes:
class Singleton {
constructor(name, age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
}
let x = new Singleton('s', 1);
let y = new Singleton('k', 2);
Output for the above will be:
console.log(x.name, x.age, y.name, y.age) // s 1 s 1
Another way of writing Singleton using function
function AnotherSingleton (name,age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
let a = new AnotherSingleton('s', 1);
let b = new AnotherSingleton('k', 2);
Output for the above will be:
console.log(a.name, a.age, b.name, b.age) // s 1 s 1
I got this example from the *JavaScript Patterns Build Better Applications with Coding and Design Patterns book (by Stoyan Stefanov). In case you need some simple implementation class like a singleton object, you can use an immediate function as in the following:
var ClassName;
(function() {
var instance;
ClassName = function ClassName() {
// If the private instance variable is already initialized, return a reference
if(instance) {
return instance;
}
// If the instance is not created, save a pointer of the original reference
// to the private instance variable.
instance = this;
// All constructor initialization will be here
// i.e.:
this.someProperty = 0;
this.someMethod = function() {
// Some action here
};
};
}());
And you can check this example by following test case:
// Extending defined class like singleton object using the new prototype property
ClassName.prototype.nothing = true;
var obj_1 = new ClassName();
// Extending the defined class like a singleton object using the new prototype property
ClassName.prototype.everything = true;
var obj_2 = new ClassName();
// Testing makes these two objects point to the same instance
console.log(obj_1 === obj_2); // Result is true, and it points to the same instance object
// All prototype properties work
// no matter when they were defined
console.log(obj_1.nothing && obj_1.everything
&& obj_2.nothing && obj_2.everything); // Result true
// Values of properties which are defined inside of the constructor
console.log(obj_1.someProperty); // Outputs 0
console.log(obj_2.someProperty); // Outputs 0
// Changing property value
obj_1.someProperty = 1;
console.log(obj_1.someProperty); // Output 1
console.log(obj_2.someProperty); // Output 1
console.log(obj_1.constructor === ClassName); // Output true
This approach passes all test cases while a private static implementation will fail when a prototype extension is used (it can be fixed, but it will not be simple) and a public static implementation less advisable due to an instance is exposed to the public.
Using ES6 classes and private static fields. Invoking new instances of the Singleton class will return the same instance. The instance variable is also private and can't be accessed outside the class.
class Singleton {
// # is a new Javascript feature that denotes private
static #instance;
constructor() {
if (!Singleton.#instance) {
Singleton.#instance = this
}
return Singleton.#instance
}
get() {
return Singleton.#instance;
}
}
const a = new Singleton();
const b = new Singleton();
console.log(a.get() === b.get()) // true
console.log(Singleton.instance === undefined) // true
There is more than one way to skin a cat :) Depending on your taste or specific need you can apply any of the proposed solutions. I personally go for Christian C. Salvadó's first solution whenever possible (when you don't need privacy).
Since the question was about the simplest and cleanest, that's the winner. Or even:
var myInstance = {}; // Done!
This (quote from my blog)...
var SingletonClass = new function() {
this.myFunction() {
// Do stuff
}
this.instance = 1;
}
doesn't make much sense (my blog example doesn't either) because it doesn't need any private variables, so it's pretty much the same as:
var SingletonClass = {
myFunction: function () {
// Do stuff
},
instance: 1
}
this.f(){}
–
Hessney I deprecate my answer, see my other one.
Usually the module pattern (see Christian C. Salvadó's answer) which is not the singleton pattern is good enough. However, one of the features of the singleton is that its initialization is delayed till the object is needed. The module pattern lacks this feature.
My proposition (CoffeeScript):
window.singleton = (initializer) ->
instance = undefined
() ->
return instance unless instance is undefined
instance = initializer()
Which compiled to this in JavaScript:
window.singleton = function(initializer) {
var instance;
instance = void 0;
return function() {
if (instance !== void 0) {
return instance;
}
return instance = initializer();
};
};
Then I can do following:
window.iAmSingleton = singleton(function() {
/* This function should create and initialize singleton. */
alert("creating");
return {property1: 'value1', property2: 'value2'};
});
alert(window.iAmSingleton().property2); // "creating" will pop up; then "value2" will pop up
alert(window.iAmSingleton().property2); // "value2" will pop up but "creating" will not
window.iAmSingleton().property2 = 'new value';
alert(window.iAmSingleton().property2); // "new value" will pop up
Short answer:
Because of the non-blocking nature of JavaScript, singletons in JavaScript are really ugly in use. Global variables will give you one instance through the whole application too without all these callbacks, and module pattern gently hides internals behind the interface. See Christian C. Salvadó's answer.
But, since you wanted a singleton…
var singleton = function(initializer) {
var state = 'initial';
var instance;
var queue = [];
var instanceReady = function(createdInstance) {
state = 'ready';
instance = createdInstance;
while (callback = queue.shift()) {
callback(instance);
}
};
return function(callback) {
if (state === 'initial') {
state = 'waiting';
queue.push(callback);
initializer(instanceReady);
} else if (state === 'waiting') {
queue.push(callback);
} else {
callback(instance);
}
};
};
Usage:
var singletonInitializer = function(instanceReady) {
var preparedObject = {property: 'value'};
// Calling instanceReady notifies the singleton that the instance is ready to use
instanceReady(preparedObject);
}
var s = singleton(singletonInitializer);
// Get the instance and use it
s(function(instance) {
instance.doSomething();
});
Explanation:
Singletons give you more than just one instance through the whole application: their initialization is delayed till the first use. This is really a big thing when you deal with objects whose initialization is expensive. Expensive usually means I/O and in JavaScript I/O always mean callbacks.
Don't trust answers which give you interface like instance = singleton.getInstance()
, they all miss the point.
If they don't take a callback to be run when an instance is ready, then they won't work when the initializer does I/O.
Yeah, callbacks always look uglier than a function call which immediately returns an object instance. But again: when you do I/O, callbacks are obligatory. If you don't want to do any I/O, then instantiation is cheap enough to do it at program start.
Example 1, cheap initializer:
var simpleInitializer = function(instanceReady) {
console.log("Initializer started");
instanceReady({property: "initial value"});
}
var simple = singleton(simpleInitializer);
console.log("Tests started. Singleton instance should not be initalized yet.");
simple(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
simple(function(inst) {
console.log("Access 2");
console.log("Current property value: " + inst.property);
});
Example 2, initialization with I/O:
In this example, setTimeout
fakes some expensive I/O operation. This illustrates why singletons in JavaScript really need callbacks.
var heavyInitializer = function(instanceReady) {
console.log("Initializer started");
var onTimeout = function() {
console.log("Initializer did his heavy work");
instanceReady({property: "initial value"});
};
setTimeout(onTimeout, 500);
};
var heavy = singleton(heavyInitializer);
console.log("In this example we will be trying");
console.log("to access singleton twice before it finishes initialization.");
heavy(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
heavy(function(inst) {
console.log("Access 2. You can see callbacks order is preserved.");
console.log("Current property value: " + inst.property);
});
console.log("We made it to the end of the file. Instance is not ready yet.");
I think I have found the cleanest way to program in JavaScript, but you'll need some imagination. I got this idea from a working technique in the book JavaScript: The Good Parts.
Instead of using the new keyword, you could create a class like this:
function Class()
{
var obj = {}; // Could also be used for inheritance if you don't start with an empty object.
var privateVar;
obj.publicVar;
obj.publicMethod = publicMethod;
function publicMethod(){}
function privateMethod(){}
return obj;
}
You can instantiate the above object by saying:
var objInst = Class(); // !!! NO NEW KEYWORD
Now with this work method in mind, you could create a singleton like this:
ClassSingleton = function()
{
var instance = null;
function Class() // This is the class like the above one
{
var obj = {};
return obj;
}
function getInstance()
{
if( !instance )
instance = Class(); // Again no 'new' keyword;
return instance;
}
return { getInstance : getInstance };
}();
Now you can get your instance by calling
var obj = ClassSingleton.getInstance();
I think this is the neatest way as the complete "Class" is not even accessible.
Christian C. Salvadó's and zzzzBov's answer have both given wonderful answers, but just to add my own interpretation based on my having moved into heavy Node.js development from PHP/Zend Framework where singleton patterns were common.
The following, comment-documented code is based on the following requirements:
- one and only one instance of the function object may be instantiated
- the instance is not publicly available and may only be accessed through a public method
- the constructor is not publicly available and may only be instantiated if there is not already an instance available
- the declaration of the constructor must allow its prototype chain to be modified. This will allow the constructor to inherit from other prototypes, and offer "public" methods for the instance
My code is very similar to zzzzBov's answer except I've added a prototype chain to the constructor and more comments that should help those coming from PHP or a similar language translate traditional OOP to JavaScript's prototypical nature. It may not be the "simplest" but I believe it is the most proper.
// Declare 'Singleton' as the returned value of a self-executing anonymous function
var Singleton = (function () {
"use strict";
// 'instance' and 'constructor' should not be available in a "public" scope
// here they are "private", thus available only within
// the scope of the self-executing anonymous function
var _instance=null;
var _constructor = function (name) {
this.name = name || 'default';
}
// Prototypes will be "public" methods available from the instance
_constructor.prototype.getName = function () {
return this.name;
}
// Using the module pattern, return a static object
// which essentially is a list of "public static" methods
return {
// Because getInstance is defined within the same scope
// it can access the "private" 'instance' and 'constructor' vars
getInstance:function (name) {
if (!_instance) {
console.log('creating'); // This should only happen once
_instance = new _constructor(name);
}
console.log('returning');
return _instance;
}
}
})(); // Self execute
// Ensure 'instance' and 'constructor' are unavailable
// outside the scope in which they were defined
// thus making them "private" and not "public"
console.log(typeof _instance); // undefined
console.log(typeof _constructor); // undefined
// Assign instance to two different variables
var a = Singleton.getInstance('first');
var b = Singleton.getInstance('second'); // passing a name here does nothing because the single instance was already instantiated
// Ensure 'a' and 'b' are truly equal
console.log(a === b); // true
console.log(a.getName()); // "first"
console.log(b.getName()); // Also returns "first" because it's the same instance as 'a'
Note that technically, the self-executing anonymous function is itself a singleton as demonstrated nicely in the code provided by Christian C. Salvadó. The only catch here is that it is not possible to modify the prototype chain of the constructor when the constructor itself is anonymous.
Keep in mind that to JavaScript, the concepts of “public” and “private” do not apply as they do in PHP or Java. But we have achieved the same effect by leveraging JavaScript’s rules of functional scope availability.
var a = Singleton.getInstance('foo'); var b = new a.constructor('bar');
–
Xanthe You could just do:
var singleton = new (function() {
var bar = 123
this.foo = function() {
// Whatever
}
})()
The clearest answer should be this one from the book Learning JavaScript Design Patterns by Addy Osmani.
var mySingleton = (function () {
// Instance stores a reference to the singleton
var instance;
function init() {
// Singleton
// Private methods and variables
function privateMethod(){
console.log( "I am private" );
}
var privateVariable = "I'm also private";
var privateRandomNumber = Math.random();
return {
// Public methods and variables
publicMethod: function () {
console.log( "The public can see me!" );
},
publicProperty: "I am also public",
getRandomNumber: function() {
return privateRandomNumber;
}
};
};
return {
// Get the singleton instance if one exists
// or create one if it doesn't
getInstance: function () {
if ( !instance ) {
instance = init();
}
return instance;
}
};
})();
This is how I implement singleton pattern using ES6 features. Yes, I know this does not look like an Object-oriented approach, but I find this method is easy to implement and a clean way to implement.
const Singleton = (() => {
var _instance = !_instance && new Object('Object created....');
return () => _instance;
})();
//************************************************************************
var instance1 = Singleton();
var instance2 = Singleton();
console.log(instance1 === instance2); // true
For me the cleanest way to do so is:
const singleton = new class {
name = "foo"
constructor() {
console.log(`Singleton ${this.name} constructed`)
}
}
With this syntax you are certain your singleton is and will remain unique. You can also enjoy the sugarness of class syntax and use this
as expected.
(Note that class fields require node v12+ or a modern browser.)
This should work:
function Klass() {
var instance = this;
Klass = function () { return instance; }
}
Test = Klass; t1 = new Test(); t2 = new Test();
- no opportunity to rename the class or pick a different namespace. –
Xanthe I believe this is the simplest/cleanest and most intuitive way though it requires ECMAScript 2016 (ES7):
export default class Singleton { static instance; constructor(){ if(instance){ return instance; } this.state = "duke"; this.instance = this; } }
The source code is from: adam-bien.com
new Singleton()
–
Hoelscher I've found the following to be the easiest singleton pattern, because using the new operator makes this immediately available within the function, eliminating the need to return an object literal:
var singleton = new (function () {
var private = "A private value";
this.printSomething = function() {
console.log(private);
}
})();
singleton.printSomething();
Following is the snippet from my walkthrough to implement a singleton pattern. This occurred to me during an interview process and I felt that I should capture this somewhere.
/*************************************************
* SINGLETON PATTERN IMPLEMENTATION *
*************************************************/
// Since there aren't any classes in JavaScript, every object
// is technically a singleton if you don't inherit from it
// or copy from it.
var single = {};
// Singleton Implementations
//
// Declaring as a global object...you are being judged!
var Logger = function() {
// global_log is/will be defined in the GLOBAL scope here
if(typeof global_log === 'undefined'){
global_log = this;
}
return global_log;
};
// The below 'fix' solves the GLOABL variable problem, but
// the log_instance is publicly available and thus can be
// tampered with.
function Logger() {
if(typeof Logger.log_instance === 'undefined') {
Logger.log_instance = this;
}
return Logger.log_instance;
};
// The correct way to do it to give it a closure!
function logFactory() {
var log_instance; // Private instance
var _initLog = function() { // Private init method
log_instance = 'initialized';
console.log("logger initialized!")
}
return {
getLog : function(){ // The 'privileged' method
if(typeof log_instance === 'undefined') {
_initLog();
}
return log_instance;
}
};
}
/***** TEST CODE ************************************************
// Using the Logger singleton
var logger = logFactory(); // Did I just give LogFactory a closure?
// Create an instance of the logger
var a = logger.getLog();
// Do some work
// Get another instance of the logger
var b = logger.getLog();
// Check if the two logger instances are same
console.log(a === b); // true
*******************************************************************/
The same can be found on my gist page.
My two cents: I have a constructor function (CF), for example,
var A = function(arg1){
this.arg1 = arg1
};
I need just every object created by this CF to be the same.
var X = function(){
var instance = {};
return function(){ return instance; }
}();
Test
var x1 = new X();
var x2 = new X();
console.log(x1 === x2)
Singleton:
Ensure a class has only one instance and provides a global point of access to it.
The singleton pattern limits the number of instances of a particular object to just one. This single instance is called the singleton.
- defines getInstance() which returns the unique instance.
- responsible for creating and managing the instance object.
The singleton object is implemented as an immediate anonymous function. The function executes immediately by wrapping it in brackets followed by two additional brackets. It is called anonymous because it doesn't have a name.
Sample Program
var Singleton = (function () {
var instance;
function createInstance() {
var object = new Object("I am the instance");
return object;
}
return {
getInstance: function () {
if (!instance) {
instance = createInstance();
}
return instance;
}
};
})();
function run() {
var instance1 = Singleton.getInstance();
var instance2 = Singleton.getInstance();
alert("Same instance? " + (instance1 === instance2));
}
run()
Here is a simple example to explain the singleton pattern in JavaScript.
var Singleton = (function() {
var instance;
var init = function() {
return {
display:function() {
alert("This is a singleton pattern demo");
}
};
};
return {
getInstance:function(){
if(!instance){
alert("Singleton check");
instance = init();
}
return instance;
}
};
})();
// In this call first display alert("Singleton check")
// and then alert("This is a singleton pattern demo");
// It means one object is created
var inst = Singleton.getInstance();
inst.display();
// In this call only display alert("This is a singleton pattern demo")
// it means second time new object is not created,
// it uses the already created object
var inst1 = Singleton.getInstance();
inst1.display();
function Once() {
return this.constructor.instance || (this.constructor.instance = this);
}
function Application(name) {
let app = Once.call(this);
app.name = name;
return app;
}
If you are into classes:
class Once {
constructor() {
return this.constructor.instance || (this.constructor.instance = this);
}
}
class Application extends Once {
constructor(name) {
super();
this.name = name;
}
}
Test:
console.log(new Once() === new Once());
let app1 = new Application('Foobar');
let app2 = new Application('Barfoo');
console.log(app1 === app2);
console.log(app1.name); // Barfoo
let MySingleton = (function () {
var _instance
function init() {
if(!_instance) {
_instance = { $knew: 1 }
}
return _instance
}
let publicAPIs = {
getInstance: function() {
return init()
}
}
// this prevents customize the MySingleton, like MySingleton.x = 1
Object.freeze(publicAPIs)
// this prevents customize the MySingleton.getInstance(), like MySingleton.getInstance().x = 1
Object.freeze(publicAPIs.getInstance())
return publicAPIs
})();
class Singelton {
static #instance;
#testValue;
constructor() {
if (Singelton.#instance instanceof Singelton) {
return Singelton.#instance;
}
Singelton.#instance = this;
return Singelton.#instance;
}
get testValue() {
return this.#testValue;
}
set testValue(value) {
this.#testValue = value;
}
}
test:
let x = new Singelton();
x.testValue = 123;
let y = new Singelton();
console.log({isSingelton: x === y, testValueFromY: y.testValue});
This knowledge is base from I am learning Java, though Java and Javascript is different, the concept of Singleton and how Java do it is just the same. In my opinion, The class style from JS is clean by itself rather than var
initialization.
class Singleton {
// use hashtag which entails that the variable can only be accessed from self scope
static #instance = null;
static getInstance() {
if (this.#instance === null) this.#instance = new Singleton();
return this.#instance;
}
// some class property
hello = 'world';
// or initialize the variable in the constructor, depend on your preference
constructor() {
// this.hello = 'world';
}
/* you can also add parameters on the constructor & getInstance
* e.g.
* static getInstance(param1, param2) {...new Singleton(param1, param2)}
* constructor(param1, param2) {...}
*/
}
// this is the same code for java and normal way for singleton for class
// just use static so you can get instance
// testing the singleton
var s1,s2;
s1 = Singleton.getInstance();
s2 = Singleton.getInstance();
// you cannot access the property, immediately
if (Singleton.hello === undefined) console.log('getInstance so you can access this');
console.log(s1.hello);
// result: "world"
console.log(s2.hello);
// result: "world"
// set the value of Singleton object
s2.hello = "hi";
console.log(s1.hello);
// result: "hi"
console.log(s2.hello);
// result: "hi"
// this is just an evidence which means that they are the same even in property level
if (s1 === s2) console.log("S1 & S2 is the same object");
// result: "S1 & S2 is the same object"
// don't use something like `var s1 = new Singleton();`
// this will defeat your purpose of just (1 object), one instance of class
new Singleton()
instead of Singleton.getInstance()
and it will create a new instance of the class –
Quinidine function Unicode()
{
var i = 0, unicode = {}, zero_padding = "0000", max = 9999;
// Loop through code points
while (i < max) {
// Convert decimal to hex value, find the character,
// and then pad zeroes to the code point
unicode[String.fromCharCode(parseInt(i, 16))] = ("u" + zero_padding + i).substr(-4);
i = i + 1;
}
// Replace this function with the resulting lookup table
Unicode = unicode;
}
// Usage
Unicode();
// Lookup
Unicode["%"]; // Returns 0025
I needed several singletons with:
- lazy initialisation
- initial parameters
And so this was what I came up with:
createSingleton ('a', 'add', [1, 2]);
console.log(a);
function createSingleton (name, construct, args) {
window[name] = {};
window[construct].apply(window[name], args);
window[construct] = null;
}
function add (a, b) {
this.a = a;
this.b = b;
this.sum = a + b;
}
args
must be Array for this to work, so if you have empty variables, just pass in[]
I used the window object in the function, but I could have passed in a parameter to create my own scope
name and construct parameters are only String in order for window[] to work, but with some simple typechecking, window.name and window.construct are also possible.
Module pattern: in "more readable style". You can see easily which methods are public and which ones are private
var module = (function(_name){
/* Local Methods & Values */
var _local = {
name : _name,
flags : {
init : false
}
}
function init(){
_local.flags.init = true;
}
function imaprivatemethod(){
alert("Hi, I'm a private method");
}
/* Public Methods & variables */
var $r = {}; // This object will hold all public methods.
$r.methdo1 = function(){
console.log("method1 calls it");
}
$r.method2 = function(){
imaprivatemethod(); // Calling private method
}
$r.init = function(){
inti(); // Making 'init' public in case you want to init manually and not automatically
}
init(); // Automatically calling the init method
return $r; // Returning all public methods
})("module");
Now you can use public methods like
module.method2(); // -> I'm calling a private method over a public method alert("Hi, I'm a private method")
Another way - just insure the class can not new again.
By this, you can use the instanceof
op. Also, you can use the prototype chain to inherit the class. It's a regular class, but you can not new it. If you want to get the instance, just use getInstance
:
function CA()
{
if(CA.instance)
{
throw new Error('can not new this class');
}
else
{
CA.instance = this;
}
}
/**
* @protected
* @static
* @type {CA}
*/
CA.instance = null;
/* @static */
CA.getInstance = function()
{
return CA.instance;
}
CA.prototype =
/** @lends CA# */
{
func: function(){console.log('the func');}
}
// Initialise the instance
new CA();
// Test here
var c = CA.getInstance()
c.func();
console.assert(c instanceof CA)
// This will fail
var b = new CA();
If you don't want to expose the instance
member, just put it into a closure.
This is also a singleton:
function Singleton() {
var i = 0;
var self = this;
this.doStuff = function () {
i = i + 1;
console.log('do stuff', i);
};
Singleton = function () { return self };
return this;
}
s = Singleton();
s.doStuff();
You can do it with decorators like in this example below for TypeScript:
class YourClass {
@Singleton static singleton() {}
}
function Singleton(target, name, descriptor) {
var instance;
descriptor.value = () => {
if(!instance) instance = new target;
return instance;
};
}
Then you use your singleton like this:
var myInstance = YourClass.singleton();
As of this writing, decorators are not readily available in JavaScript engines. You would need to make sure your JavaScript runtime has decorators actually enabled or use compilers like Babel and TypeScript.
Also note that the singleton instance is created "lazy", i.e., it is created only when you use it for the first time.
Simple Example
class Settings {
constructor() {
if (Settings.instance instanceof Settings) {
return Settings.instance;
}
this.settings = {
id: Math.floor(Math.random() * 4000),
name: "background",
};
Object.freeze(this.settings);
Object.freeze(this);
Settings.instance = this;
}
}
var o1 = new Settings();
var o2 = new Settings();
console.dir(o1);
console.dir(o2);
if (o1 === o2) {
console.log("Matched");
}
I like to use a combination of the singleton pattern with the module pattern, and init-time branching with a Global NS check, wrapped within a closure.
In a case where the environment isn't going to change after the initialization of the singleton, the use of an immediately invoked object-literal to return a module full of utilities that will persist for some duration should be fine.
I'm not passing any dependencies, just invoking the singletons within their own little world - the only goal being to: create a utilities module for event binding / unbinding (device orientation / orientation changes could also work in this case).
window.onload = ( function( _w ) {
console.log.apply( console, ['it', 'is', 'on'] );
( {
globalNS : function() {
var nameSpaces = ["utils", "eventUtils"],
nsLength = nameSpaces.length,
possibleNS = null;
outerLoop:
for ( var i = 0; i < nsLength; i++ ) {
if ( !window[nameSpaces[i]] ) {
window[nameSpaces[i]] = this.utils;
break outerLoop;
};
};
},
utils : {
addListener : null,
removeListener : null
},
listenerTypes : {
addEvent : function( el, type, fn ) {
el.addEventListener( type, fn, false );
},
removeEvent : function( el, type, fn ) {
el.removeEventListener( type, fn, false );
},
attachEvent : function( el, type, fn ) {
el.attachEvent( 'on'+type, fn );
},
detatchEvent : function( el, type, fn ) {
el.detachEvent( 'on'+type, fn );
}
},
buildUtils : function() {
if ( typeof window.addEventListener === 'function' ) {
this.utils.addListener = this.listenerTypes.addEvent;
this.utils.removeListener = this.listenerTypes.removeEvent;
} else {
this.utils.attachEvent = this.listenerTypes.attachEvent;
this.utils.removeListener = this.listenerTypes.detatchEvent;
};
this.globalNS();
},
init : function() {
this.buildUtils();
}
} ).init();
} ( window ) );
You did not say "in the browser". Otherwise, you can use Node.js modules. These are the same for each require
call. Basic example:
The contents of foo.js:
const circle = require('./circle.js'); console.log(`The area of a circle of radius 4 is ${circle.area(4)}`);
The contents of circle.js:
const PI = Math.PI; exports.area = (r) => PI * r * r; exports.circumference = (r) => 2 * PI * r;
Note that you cannot access circle.PI
, as it is not exported.
While this does not work in the browser, it is simple and clean.
The main key is to understand the closure's importance behind this. So a property even inside the inner function will be private with the help of the closure.
var Singleton = function () {
var instance;
function init() {
function privateMethod() {
console.log("private via closure");
}
var privateVariable = "Private Property";
var privateRandomNumber = Math.random(); // This is also private
return {
getRandomNumber: function () { // Access via getter in init call
return privateRandomNumber;
}
};
};
return {
getInstance: function () {
if (!instance) {
instance = init();
}
return instance;
}
};
};
You can return the same instance in every new
execution -
function Singleton() {
// lazy
if (Singleton.prototype.myInstance == undefined) {
Singleton.prototype.myInstance = { description: "I am the instance"};
}
return Singleton.prototype.myInstance;
}
a = new Singleton();
b = new Singleton();
console.log(a); // { description: "I am the instance"};
console.log(b); // { description: "I am the instance"};
console.log(a==b); // true
Simply use a class expression:
const singleton = new (class {
hello() { return 'world'; }
})();
console.log(singleton.hello()); //=> world
A singleton in JavaScript is achieved using the module pattern and closures.
Below is the code which is pretty much self-explanatory -
// Singleton example.
var singleton = (function() {
var instance;
function init() {
var privateVar1 = "this is a private variable";
var privateVar2 = "another var";
function pubMethod() {
// Accessing private variables from inside.
console.log(this.privateVar1);
console.log(this.privateVar2);
console.log("inside of a public method");
};
}
function getInstance() {
if (!instance) {
instance = init();
}
return instance;
};
return {
getInstance: getInstance
}
})();
var obj1 = singleton.getInstance();
var obj2 = singleton.getInstance();
console.log(obj1 === obj2); // Check for type and value.
So to be fair the simplest answer is usually the best. An object literal is always a single instance. Not much reason for anything more complex other than, perhaps allocation of memory on demand.
That being said, here is a classical implementation of a singleton using ES6.
- The instance "field" is "private". This really means we hide the instance as a property of the constructor. Somewhere not Constructor.prototype, which will be available to the instance through prototipical inheritance.
- The constructor is "private". We really are just throwing an error when the caller is not the static getInstance method.
Also of note. It’s important to understand what the keyword this means in different contexts.
In the constructor, this points to the instance created.
In the static getInstance method, this points to the left of the dot, Universe constructor function which, is an object like most things in JS and can hold properties.
class Universe {
constructor() {
if (!((new Error).stack.indexOf("getInstance") > -1)) {
throw new Error("Constructor is private. Use static method getInstance.");
}
this.constructor.instance = this;
this.size = 1;
}
static getInstance() {
if (this.instance) {
return this.instance;
}
return new this;
}
expand() {
this.size *= 2;
return this.size;
}
}
console.log(Universe.getInstance())
console.log(Universe.getInstance().expand())
console.log(Universe.getInstance())
console.log(new Universe())
Universe.instance
is not exactly private, everybody can access and even overwrite it. It also is inherited by subclasses (although subclassing singletons is a bad idea anyway). –
Machzor var singleton = (function () {
var singleton = function(){
// Do stuff
}
var instance = new singleton();
return function(){
return instance;
}
})();
A solution without the getInstance method.
© 2022 - 2024 — McMap. All rights reserved.