The Pure programming language is apparently based on term rewriting, instead of the lambda-calculus that traditionally underlies similar-looking languages.
...what qualitative, practical difference does this make? In fact, what is the difference in the way that it evaluates expressions?
The linked page provides a lot of examples of term rewriting being useful, but it doesn't actually describe what it does differently from function application, except that it has rather flexible pattern matching (and pattern matching as it appears in Haskell and ML is nice, but not fundamental to the evaluation strategy). Values are matched against the left side of a definition and substituted into the right side - isn't this just beta reduction?
The matching of patterns, and substitution into output expressions, superficially looks a bit like syntax-rules
to me (or even the humble #define
), but the main feature of that is obviously that it happens before rather than during evaluation, whereas Pure is fully dynamic and there is no obvious phase separation in its evaluation system (and in fact otherwise Lisp macro systems have always made a big noise about how they are not different from function application). Being able to manipulate symbolic expression values is cool'n'all, but also seems like an artifact of the dynamic type system rather than something core to the evaluation strategy (pretty sure you could overload operators in Scheme to work on symbolic values; in fact you can even do it in C++ with expression templates).
So what is the mechanical/operational difference between term rewriting (as used by Pure) and traditional function application, as the underlying model of evaluation, when substitution happens in both?