Edited (10/31/2015) to reflect preferred coding style for statsmodels
as fall 2015.
In statsmodels
version 0.6.1 you can do the following:
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9],
'b':[3,5,6,2,4,6,7,8,7,8,9]})
reg = smf.ols('a ~ 1 + b',data=df).fit(cov_type='HAC',cov_kwds={'maxlags':1})
print(reg.summary())
OLS Regression Results
==============================================================================
Dep. Variable: a R-squared: 0.281
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 1.949
Date: Sat, 31 Oct 2015 Prob (F-statistic): 0.196
Time: 03:15:46 Log-Likelihood: -22.603
No. Observations: 11 AIC: 49.21
Df Residuals: 9 BIC: 50.00
Df Model: 1
Covariance Type: HAC
==============================================================================
coef std err z P>|z| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 2.0576 2.661 0.773 0.439 -3.157 7.272
b 0.5595 0.401 1.396 0.163 -0.226 1.345
==============================================================================
Omnibus: 0.361 Durbin-Watson: 1.468
Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.331
Skew: 0.321 Prob(JB): 0.847
Kurtosis: 2.442 Cond. No. 19.1
==============================================================================
Warnings:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction
Or you can use the get_robustcov_results
method after fitting the model:
reg = smf.ols('a ~ 1 + b',data=df).fit()
new = reg.get_robustcov_results(cov_type='HAC',maxlags=1)
print(new.summary())
OLS Regression Results
==============================================================================
Dep. Variable: a R-squared: 0.281
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 1.949
Date: Sat, 31 Oct 2015 Prob (F-statistic): 0.196
Time: 03:15:46 Log-Likelihood: -22.603
No. Observations: 11 AIC: 49.21
Df Residuals: 9 BIC: 50.00
Df Model: 1
Covariance Type: HAC
==============================================================================
coef std err z P>|z| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 2.0576 2.661 0.773 0.439 -3.157 7.272
b 0.5595 0.401 1.396 0.163 -0.226 1.345
==============================================================================
Omnibus: 0.361 Durbin-Watson: 1.468
Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.331
Skew: 0.321 Prob(JB): 0.847
Kurtosis: 2.442 Cond. No. 19.1
==============================================================================
Warnings:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction
The defaults for statsmodels
are slightly different than the defaults for the equivalent method in R
. The R
method can be made equivalent to the statsmodels
default (what I did above) by changing the vcov,
call to the following:
temp.summ$coefficients <- unclass(coeftest(temp.lm,
vcov. = NeweyWest(temp.lm,lag=1,prewhite=FALSE)))
print(temp.summ$coefficients)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0576208 2.6605060 0.7733945 0.4591196
b 0.5594796 0.4007965 1.3959193 0.1962142
You can also still do Newey-West in pandas (0.17), although I believe the plan is to deprecate OLS in pandas:
print(pd.stats.ols.OLS(df.a,df.b,nw_lags=1))
-------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <x> + <intercept>
Number of Observations: 11
Number of Degrees of Freedom: 2
R-squared: 0.2807
Adj R-squared: 0.2007
Rmse: 2.0880
F-stat (1, 9): 1.5943, p-value: 0.2384
Degrees of Freedom: model 1, resid 9
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
x 0.5595 0.4431 1.26 0.2384 -0.3090 1.4280
intercept 2.0576 2.9413 0.70 0.5019 -3.7073 7.8226
*** The calculations are Newey-West adjusted with lags 1
---------------------------------End of Summary---------------------------------
use_correction=True, use_t=True
. I don't know where the difference to R comes from, especially the difference in the standard error of the constant. Most robust covariance matrices were verified against Stata, but statsmodels doesn't always have the same default values for the options. – Crustacean