Interesting question.
So I was wondering if interfering with how the distribution works by
constantly resetting it (i.e. recreating the distribution at every
call of get_int_from_range) I get properly distributed results.
I've written code to test this with uniform_int_distribution
and poisson_distribution
. It's easy enough to extend this to test another distribution if you wish. The answer seems to be yes.
Boiler-plate code:
#include <random>
#include <memory>
#include <chrono>
#include <utility>
typedef std::mt19937_64 engine_type;
inline size_t get_seed()
{ return std::chrono::system_clock::now().time_since_epoch().count(); }
engine_type& engine_singleton()
{
static std::unique_ptr<engine_type> ptr;
if ( !ptr )
ptr.reset( new engine_type(get_seed()) );
return *ptr;
}
// ------------------------------------------------------------------------
#include <cmath>
#include <cstdio>
#include <vector>
#include <string>
#include <algorithm>
void plot_distribution( const std::vector<double>& D, size_t mass = 200 )
{
const size_t n = D.size();
for ( size_t i = 0; i < n; ++i )
{
printf("%02ld: %s\n", i,
std::string(static_cast<size_t>(D[i]*mass),'*').c_str() );
}
}
double maximum_difference( const std::vector<double>& x, const std::vector<double>& y )
{
const size_t n = x.size();
double m = 0.0;
for ( size_t i = 0; i < n; ++i )
m = std::max( m, std::abs(x[i]-y[i]) );
return m;
}
Code for the actual tests:
#include <iostream>
#include <vector>
#include <cstdio>
#include <random>
#include <string>
#include <cmath>
void compare_uniform_distributions( int lo, int hi )
{
const size_t sample_size = 1e5;
// Initialize histograms
std::vector<double> H1( hi-lo+1, 0.0 ), H2( hi-lo+1, 0.0 );
// Initialize distribution
auto U = std::uniform_int_distribution<int>(lo,hi);
// Count!
for ( size_t i = 0; i < sample_size; ++i )
{
engine_type E(get_seed());
H1[ U(engine_singleton())-lo ] += 1.0;
H2[ U(E)-lo ] += 1.0;
}
// Normalize histograms to obtain "densities"
for ( size_t i = 0; i < H1.size(); ++i )
{
H1[i] /= sample_size;
H2[i] /= sample_size;
}
printf("Engine singleton:\n"); plot_distribution(H1);
printf("Engine creation :\n"); plot_distribution(H2);
printf("Maximum difference: %.3f\n", maximum_difference(H1,H2) );
std::cout<< std::string(50,'-') << std::endl << std::endl;
}
void compare_poisson_distributions( double mean )
{
const size_t sample_size = 1e5;
const size_t nbins = static_cast<size_t>(std::ceil(2*mean));
// Initialize histograms
std::vector<double> H1( nbins, 0.0 ), H2( nbins, 0.0 );
// Initialize distribution
auto U = std::poisson_distribution<int>(mean);
// Count!
for ( size_t i = 0; i < sample_size; ++i )
{
engine_type E(get_seed());
int u1 = U(engine_singleton());
int u2 = U(E);
if (u1 < nbins) H1[u1] += 1.0;
if (u2 < nbins) H2[u2] += 1.0;
}
// Normalize histograms to obtain "densities"
for ( size_t i = 0; i < H1.size(); ++i )
{
H1[i] /= sample_size;
H2[i] /= sample_size;
}
printf("Engine singleton:\n"); plot_distribution(H1);
printf("Engine creation :\n"); plot_distribution(H2);
printf("Maximum difference: %.3f\n", maximum_difference(H1,H2) );
std::cout<< std::string(50,'-') << std::endl << std::endl;
}
// ------------------------------------------------------------------------
int main()
{
compare_uniform_distributions( 0, 25 );
compare_poisson_distributions( 12 );
}
Run it here.
Does the C++ standard make any guarantee regarding this topic?
Not that I know of. However, I would say that the standard makes an implicit recommendation not to re-create the engine every time; for any distribution Distrib
, the prototype of Distrib::operator()
takes a reference URNG&
and not a const reference. This is understandably required because the engine might need to update its internal state, but it also implies that code looking like this
auto U = std::uniform_int_distribution(0,10);
for ( <something here> ) U(engine_type());
does not compile, which to me is a clear incentive not to write code like this.
I'm sure there are plenty of advice out there on how to properly use the random library. It does get complicated if you have to handle the possibility of using random_device
s and allowing deterministic seeding for testing purposes, but I thought it might be useful to throw my own recommendation out there too:
#include <random>
#include <chrono>
#include <utility>
#include <functional>
inline size_t get_seed()
{ return std::chrono::system_clock::now().time_since_epoch().count(); }
template <class Distrib>
using generator_type = std::function< typename Distrib::result_type () >;
template <class Distrib, class Engine = std::mt19937_64, class... Args>
inline generator_type<Distrib> get_generator( Args&&... args )
{
return std::bind( Distrib( std::forward<Args>(args)... ), Engine(get_seed()) );
}
// ------------------------------------------------------------------------
#include <iostream>
int main()
{
auto U = get_generator<std::uniform_int_distribution<int>>(0,10);
std::cout<< U() << std::endl;
}
Run it here. Hope this helps!
EDIT My first recommendation was a mistake, and I apologise for that; we can't use a singleton engine like in the tests above, because this would mean that two uniform int distributions would produce the same random sequence. Instead I rely on the fact that std::bind
copies the newly-created engine locally in std::function
with its own seed, and this yields the expected behaviour; different generators with the same distribution produce different random sequences.
param_type
) state, and do not "really" makeoperator()
change the state. The "some internal state" we care about would be the state not dependent onparam_type
-- the #3 case in your link. All your code would do is make any chained dependency on previousoperator()
calls be maintained. Simple distributions are not likely to have such dependencies (ie, theirreset()
is going to do nothing, and two constructed instances with the sameparam_type
are going to be identical). – Expulsiveparam_type
of the existing distribution (this is like areset()
) or a new distribution. Using the same distribution is possible but complex (see the edit of the question). – Ingenuousreset()
) but Pete Becker's answer has raised some doubts. – Ingenuous