I'm working in a Python 3.8+ Django/Rest-Framework environment enforcing types in new code but built on a lot of untyped legacy code and data. We are using TypedDicts extensively for ensuring that data we are generating passes to our TypeScript front-end with the proper data type.
MyPy/PyCharm/etc. does a great job of checking that our new code spits out data that conforms, but we want to test that the output of our many RestSerializers/ModelSerializers fits the TypeDict. If I have a serializer and typed dict like:
class PersonSerializer(ModelSerializer):
class Meta:
model = Person
fields = ['first', 'last']
class PersonData(TypedDict):
first: str
last: str
email: str
and then run code like:
person_dict: PersonData = PersonSerializer(Person.objects.first()).data
Static type checkers don't be able to figure out that person_dict
is missing the required email
key, because (by design of PEP-589) it is just a normal dict
. But I can write something like:
annotations = PersonData.__annotations__
for k in annotations:
assert k in person_dict # or something more complex.
assert isinstance(person_dict[k], annotations[k])
and it will find that email
is missing from the data of the serializer. This is well and good in this case, where I don't have any changes introduced by from __future__ import annotations
(not sure if this would break it), and all my type annotations are bare types. But if PersonData
were defined like:
class PersonData(TypedDict):
email: Optional[str]
affiliations: Union[List[str], Dict[int, str]]
then isinstance
is not good enough to check if the data passes (since "Subscripted generics cannot be used with class and instance checks").
What I'm wondering is if there already exists a callable function/method (in mypy or another checker) that would allow me to validate a TypedDict (or even a single variable, since I can iterate a dict myself) against an annotation and see if it validates?
I'm not concerned about speed, etc., since the point of this is to check all our data/methods/functions once and then remove the checks later once we're happy that our current data validates.
dacite
for simple deserialization, and you can also check outmarshmallow
if you want to do heavier validation) – Indicatory