Endorsing @abelenky suggestion, using an union
would be a more fail proof way of doing this.
union unsigned_number {
unsigned int value; // An int is 4 bytes long
unsigned char index[4]; // A char is 1 byte long
};
The characteristics of this type is that the compiler will allocate memory only for the biggest member of our data structure unsigned_number
, which in this case is going to be 4 bytes - since both members (value and index) have the same size. Had you defined it as a struct
instead, we would have 8 bytes allocated on memory, since the compiler does its allocation for all the members of a struct
.
Additionally, and here is where your problem is solved, the members of an union
data structure all share the same memory location, which means they all refer to same data - think of that like a hard link on GNU/Linux systems.
So we would have:
union unsigned_number my_number;
// Assigning decimal value 202050300 to my_number
// which is represented as 0xC0B0AFC in hex format
my_number.value = 0xC0B0AFC; // Representation: Binary - Decimal
// Byte 3: 00001100 - 12
// Byte 2: 00001011 - 11
// Byte 1: 00001010 - 10
// Byte 0: 11111100 - 252
// Printing out my_number one byte at time
for (int i = 0; i < (sizeof(my_number.value)); i++)
{
printf("index[%d]: %u, 0x%x\n", \
i, my_number.index[i], my_number.index[i]);
}
// Printing out my_number as an unsigned integer
printf("my_number.value: %u, 0x%x", my_number.value, my_number.value);
And the output is going to be:
index[0]: 252, 0xfc
index[1]: 10, 0xa
index[2]: 11, 0xb
index[3]: 12, 0xc
my_number.value: 202050300, 0xc0b0afc
And as for your final question, we wouldn't have to convert from unsigned char back to unsigned int since the values are already there. You just have to choose by which way you want to access it
Note 1: I am using an integer of 4 bytes in order to ease the understanding of the concept. For the problem you presented you must use:
union unsigned_number {
unsigned short int value; // A short int is 2 bytes long
unsigned char index[2]; // A char is 1 byte long
};
Note 2: I have assigned byte 0
to 252
in order to point out the unsigned characteristic of our index
field. Was it declared as a signed char
, we would have index[0]: -4, 0xfc
as output.