It’s possible to load a symbol file in gdb with the add-symbol-file
command. The hardest part is to produce this symbol file.
With the help of libMachObjC (which is part of class-dump), it’s very easy to dump all addresses and their corresponding Objective-C methods. I have written a small tool, objc-symbols which does exactly this.
Let’s use Calendar.app as an example. If you try to list the symbols with the nm
tool, you will notice that the Calendar app has been stripped:
$ nm -U /Applications/Calendar.app/Contents/MacOS/Calendar
0000000100000000 T __mh_execute_header
0000000005614542 - 00 0000 OPT radr://5614542
But with objc-symbols
you can easily retrieve the addresses of all the missing Objective-C methods:
$ objc-symbols /Applications/Calendar.app
00000001000c774c +[CALCanvasAttributedText textWithPosition:size:text:]
00000001000c8936 -[CALCanvasAttributedText createTextureIfNeeded]
00000001000c8886 -[CALCanvasAttributedText bounds]
00000001000c883b -[CALCanvasAttributedText updateBezierRepresentation]
...
00000001000309eb -[CALApplication applicationDidFinishLaunching:]
...
Then, with SymTabCreator you can create a symbol file, which is just actually an empty dylib with all the symbols.
Using objc-symbols
and SymTabCreator
together is straightforward:
$ objc-symbols /Applications/Calendar.app | SymTabCreator -o Calendar.stabs
You can check that Calendar.stabs
contains all the symbols:
$ nm Calendar.stabs
000000010014a58b T +[APLCALSource printingCachedTextSize]
000000010013e7c5 T +[APLColorSource alternateGenerator]
000000010013e780 T +[APLColorSource defaultColorSource]
000000010013e7bd T +[APLColorSource defaultGenerator]
000000010011eb12 T +[APLConstraint constraintOfClass:withProperties:]
...
00000001000309eb T -[CALApplication applicationDidFinishLaunching:]
...
Now let’s see what happens in gdb:
$ gdb --silent /Applications/Calendar.app
Reading symbols for shared libraries ................................. done
Without the symbol file:
(gdb) b -[CALApplication applicationDidFinishLaunching:]
Function "-[CALApplication applicationDidFinishLaunching:]" not defined.
Make breakpoint pending on future shared library load? (y or [n]) n
And after loading the symbol file:
(gdb) add-symbol-file Calendar.stabs
add symbol table from file "Calendar.stabs"? (y or n) y
Reading symbols from /Users/0xced/Calendar.stabs...done.
(gdb) b -[CALApplication applicationDidFinishLaunching:]
Breakpoint 1 at 0x1000309f2
You will notice that the breakpoint address does not exactly match the symbol address (0x1000309f2 vs 0x1000309eb, 7 bytes of difference), this is because gdb automatically recognizes the function prologue and sets the breakpoint just after.
GDB script
You can use this GDB script to automate this, given that the stripped executable is the current target.
Add the script from below to your .gdbinit
, target the stripped executable and run the command objc_symbols
in gdb:
$ gdb test
...
(gdb) b +[TestClass randomNum]
Function "+[TestClass randomNum]" not defined.
(gdb) objc_symbols
(gdb) b +[TestClass randomNum]
Breakpoint 1 at 0x100000ee1
(gdb) ^D
define objc_symbols
shell rm -f /tmp/gdb-objc_symbols
set logging redirect on
set logging file /tmp/gdb-objc_symbols
set logging on
info target
set logging off
shell target="$(head -1 /tmp/gdb-objc_symbols | head -1 | awk -F '"' '{ print $2 }')"; objc-symbols "$target" | SymTabCreator -o /tmp/gdb-symtab
set logging on
add-symbol-file /tmp/gdb-symtab
set logging off
end