I have three dataframes: timestamp (with timestamps), dataSun (with timestamps of sunrise and sunset), dataData (with different climate data). Dataframe timestamp
has datatype "int64"
.
timestamp.head()
timestamp
0 1521681600000
1 1521681900000
2 1521682200000
3 1521682500000
4 1521682800000
Dataframe dataSun
has also datatype "int64"
.
dataSun.head()
sunrise sunset
0 1521696105000 1521740761000
1 1521696105000 1521740761000
2 1521696105000 1521740761000
3 1521696105000 1521740761000
4 1521696105000 1521740761000
Dataframe with climate data dataData
has datatype "float64"
.
dataData.head()
temperature pressure humidity
0 2.490000 1018.000000 99.0
1 2.408333 1017.833333 99.0
2 2.326667 1017.666667 99.0
3 2.245000 1017.500000 99.0
4 2.163333 1017.333333 99.0
5 2.081667 1017.166667 99.0
I want to concatenate these three dataframes in one.
dataResult = pd.concat((timestamp, dataSun, dataData), axis = 1)
dataResult.head()
timestamp sunrise sunset temperature pressure
0 1521681600000 1.521696e+12 1.521741e+12 2.490000 1018.000000
1 1521681900000 1.521696e+12 1.521741e+12 2.408333 1017.833333
2 1521682200000 1.521696e+12 1.521741e+12 2.326667 1017.666667
3 1521682500000 1.521696e+12 1.521741e+12 2.245000 1017.500000
4 1521682800000 1.521696e+12 1.521741e+12 2.163333 1017.333333
5 1521683100000 1.521696e+12 1.521741e+12 2.081667 1017.166667
weatherMeasurements.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7188 entries, 0 to 7187
Data columns (total 6 columns):
timestamp 7188 non-null int64
sunrise 7176 non-null float64
sunset 7176 non-null float64
temperature 7176 non-null float64
pressure 7176 non-null float64
humidity 7176 non-null float64
dtypes: float64(5), int64(1)
Why pd.concat
has changes the datatype of the values DataSun
? I have tried different ways to concatenate the dataframes. For example, I concatenated only timestamp
and dataSun
in one dataframe, then I concatenated resulted dataframe with dataData
. But it was the same result.
How can I concatenate three dataframes and secure the datatypes?