I understand that a fundamental aspect of full-text search is the use of inverted indexes. So, with an inverted index a one-word query becomes trivial to answer. Assuming the index is structured like this:
some-word -> [doc385, doc211, doc39977, ...] (sorted by rank, descending)
To answer the query for that word the solution is just to find the correct entry in the index (which takes O(log n) time) and present some given number of documents (e.g. the first 10) from the list specified in the index.
But what about queries which return documents that match, say, two words? The most straightforward implementation would be the following:
- set A to be the set of documents which have word 1 (by searching the index).
- set B to be the set of documents which have word 2 (ditto).
- compute the intersection of A and B.
Now, step three probably takes O(n log n) time to perform. For very large A and Bs that could make the query slow to answer. But search engines like Google always return their answer in a few milliseconds. So that can't be the full answer.
One obvious optimization is that since a search engine like Google doesn't return all the matching documents anyway, we don't have to compute the whole intersection. We can start with the smallest set (e.g. B) and find enough entries which also belong to the other set (e.g. A).
But can't we still have the following worst case? If we have set A be the set of documents matching a common word, and set B be the set of documents matching another common word, there might still be cases where A ∩ B is very small (i.e. the combination is rare). That means that the search engine has to linearly go through a all elements x member of B, checking if they are also elements of A, to find the few that match both conditions.
Linear isn't fast. And you can have way more than two words to search for, so just employing parallelism surely isn't the whole solution. So, how are these cases optimized? Do large-scale full-text search engines use some kind of compound indexes? Bloom filters? Any ideas?