Sounds like you need to read into the Rfc2898DeriveBytes class.
Rfc2898DeriveBytes.GetBytes();
It has a method(above) that allows you to tailor the size of byte arrays that are fed into the .Key and .IV properties on a symmetric encryption algorithm, simply by feeding an int value. The MS official 70-536 book suggests doing this pro-grammatically by dividing the KeySize property / 8.
I.e TripleDes or AESManaged. Whatever you use, the algorithm itself will have some pre-reqs that will need meeting first. I.e satisfying the key size conditions. The RunTime will automatically fill the properties and fields and etc the best and most strongest values for you. But the IV and Key needs to come from you. This how you can do the following:
RijndaelManaged myAlg = new RiRijndaelManaged();
byte[] salt = Encoding.ASCII.GetBytes("Some salt value");
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes("some password", salt);
myAlg.Key = key.GetBytes( myAlg.KeySize / 8);
myAlg.IV = key.GetBytes( myAlg.BlockSize / 8);
// myAld should now fully set-up.
Above you can see what I mean by doing it pro-grammatically, as it should pretty much
do it all for you, without you even really having to bat an eye-lid as to meeting it's pre-reqs.
The Microsoft 70-536 book states that the .Key properties expect the byte arrays you supply
to them in bytes and not bits. The RFC class works in bytes where as an algorithms KeySize property works in bits. 1 byte = 8 bits. Can you see where this is going ... ?
This should give you an idea as to why the above sample peice of code is done the way it is! I studied it and it makes pretty darn good sense to me!
The above answer should allow you to create your algorithm object with supplied password and a static salt value that can be hard code at both ends. Only thing you need to do is worry about how you going to make sure that the byte arrays stored at .Key and .IV are safely transported to a recipient so that can successfully decrypt the message you encrypted. By safely reconstructing the same algorithm object.
OBTW:
AESManaged has a keysize req': 128Bits = 16 Bytes !!!
(8*8 = 64, 64Bit / 8bits per Byte = 8 Bytes) Therefore
64*2 = 128Bit, 8*2, ==> 16bytes key size !
256Bit = 32Bytes !!!!
According to the 70-536 official training kit book, Aes is limited to having keysize of 128bits in size. 256bits,192 and 128 key size for example can be used with the Rijndael class.
You could on the other hand completely forget all that crap and simply use .GenerateKey and GenerateIV methods instead to save you all the hassle of sorting out a pre-shared and agreed password and static salt values. Your only concern is figuring out a way of storing and retrieving the key and IV byte arrays. Binary Formatter? .