How can I achieve a cross join in R ? I know that "merge" can do inner join, outer join. But I do not know how to achieve a cross join in R.
Thanks
How can I achieve a cross join in R ? I know that "merge" can do inner join, outer join. But I do not know how to achieve a cross join in R.
Thanks
Is it just all=TRUE
?
x<-data.frame(id1=c("a","b","c"),vals1=1:3)
y<-data.frame(id2=c("d","e","f"),vals2=4:6)
merge(x,y,all=TRUE)
From documentation of merge
:
If by or both by.x and by.y are of length 0 (a length zero vector or NULL), the result, r, is the Cartesian product of x and y, i.e., dim(r) = c(nrow(x)*nrow(y), ncol(x) + ncol(y)).
all
? Don't see how all=FALSE
(default) would influence the outcome. Also note that merge
sets by.x = by.y = by = intersect(names(x), names(y)
so x
and y
may not share any column names (otherwise you will not get a cross join with default settings). –
Ballista If speed is an issue, I suggest checking out the excellent data.table
package. In the example at the end it's ~90x faster than merge
.
You didn't provide example data. If you just want to get all combinations of two (or more individual) columns, you can use CJ
(cross join):
library(data.table)
CJ(x=1:2,y=letters[1:3])
# x y
#1: 1 a
#2: 1 b
#3: 1 c
#4: 2 a
#5: 2 b
#6: 2 c
If you want to do a cross join on two tables, I haven't found a way to use CJ(). But you can still use data.table
:
x2<-data.table(id1=letters[1:3],vals1=1:3)
y2<-data.table(id2=letters[4:7],vals2=4:7)
res<-setkey(x2[,c(k=1,.SD)],k)[y2[,c(k=1,.SD)],allow.cartesian=TRUE][,k:=NULL]
res
# id1 vals1 id2 vals2
# 1: a 1 d 4
# 2: b 2 d 4
# 3: c 3 d 4
# 4: a 1 e 5
# 5: b 2 e 5
# 6: c 3 e 5
# 7: a 1 f 6
# 8: b 2 f 6
# 9: c 3 f 6
#10: a 1 g 7
#11: b 2 g 7
#12: c 3 g 7
Explanation of the res
line:
setkey(tablename,keycolumns)
), add the dummy column to the other table, and then join them.c(k=1,.SD)
part is one way that I have found to add columns at the beginning (the default is to add them to the end).X[Y]
. The X in this case is setkey(x2[,c(k=1,.SD)],k)
, and the Y is y2[,c(k=1,.SD)]
.allow.cartesian=TRUE
tells data.table
to ignore the duplicate key values, and perform a cartesian join (prior versions didn't require this)[,k:=NULL]
at the end just removes the dummy key from the result.You can also turn this into a function, so it's cleaner to use:
# Version 1; easier to write:
CJ.table.1 <- function(X,Y)
setkey(X[,c(k=1,.SD)],k)[Y[,c(k=1,.SD)],allow.cartesian=TRUE][,k:=NULL]
CJ.table.1(x2,y2)
# id1 vals1 id2 vals2
# 1: a 1 d 4
# 2: b 2 d 4
# 3: c 3 d 4
# 4: a 1 e 5
# 5: b 2 e 5
# 6: c 3 e 5
# 7: a 1 f 6
# 8: b 2 f 6
# 9: c 3 f 6
#10: a 1 g 7
#11: b 2 g 7
#12: c 3 g 7
# Version 2; faster but messier:
CJ.table.2 <- function(X,Y) {
eval(parse(text=paste0("setkey(X[,c(k=1,.SD)],k)[Y[,c(k=1,.SD)],list(",paste0(unique(c(names(X),names(Y))),collapse=","),")][,k:=NULL]")))
}
Here are some speed benchmarks:
# Create a bigger (but still very small) example:
n<-1e3
x3<-data.table(id1=1L:n,vals1=sample(letters,n,replace=T))
y3<-data.table(id2=1L:n,vals2=sample(LETTERS,n,replace=T))
library(microbenchmark)
microbenchmark(merge=merge.data.frame(x3,y3,all=TRUE),
CJ.table.1=CJ.table.1(x3,y3),
CJ.table.2=CJ.table.2(x3,y3),
times=3, unit="s")
#Unit: seconds
# expr min lq median uq max neval
# merge 4.03710225 4.23233688 4.42757152 5.57854711 6.72952271 3
# CJ.table.1 0.06227603 0.06264222 0.06300842 0.06701880 0.07102917 3
# CJ.table.2 0.04740142 0.04812997 0.04885853 0.05433146 0.05980440 3
Note that these data.table
methods are much faster than the merge
method suggested by @danas.zuokas. The two tables with 1,000 rows in this example result in a cross-joined table with 1 million rows. So even if your original tables are small, the result can get big quickly and speed becomes important.
Lastly, recent versions of data.table
require you to add the allow.cartesian=TRUE
(as in CJ.table.1) or specify the names of the columns that should be returned (CJ.table.2). The second method (CJ.table.2) seems to be faster, but requires some more complicated code if you want to automatically specify all the column names. And it may not work with duplicate column names. (Feel free to suggest a simpler version of CJ.table.2)
CJ.table<-function(X,Y) setkey(X[,c(k=1,.SD)],k)[Y[,c(k=1,.SD)],allow.cartesian=TRUE][,k:=NULL]
–
Tittletattle data.table
behavior has changed since my original answer. I've updated it and added some timings. Thanks. –
Churchman CJ.table.3 <- function(X,Y){ unique_name <- last(make.unique(c(colnames(X),colnames(Y),"k"))) X[,c(setNames(1,unique_name),.SD)][Y[,c(setNames(1,unique_name),.SD)],on=unique_name,allow.cartesian=TRUE][,(unique_name):=NULL] }
–
Cachexia allow.cartesian
alleviates this, but data.table suggests using the by = .EACHI
. Note that all three methods provide almost exactly the same speed as of today (benchmarking provides around 35 miliseconds on my machine for all 3 methods over 1000 replications), as such there is no performance benefit over the less readable version CJ.table.2
. (with the added allow.cartesian argument) –
Sisyphean Is it just all=TRUE
?
x<-data.frame(id1=c("a","b","c"),vals1=1:3)
y<-data.frame(id2=c("d","e","f"),vals2=4:6)
merge(x,y,all=TRUE)
From documentation of merge
:
If by or both by.x and by.y are of length 0 (a length zero vector or NULL), the result, r, is the Cartesian product of x and y, i.e., dim(r) = c(nrow(x)*nrow(y), ncol(x) + ncol(y)).
all
? Don't see how all=FALSE
(default) would influence the outcome. Also note that merge
sets by.x = by.y = by = intersect(names(x), names(y)
so x
and y
may not share any column names (otherwise you will not get a cross join with default settings). –
Ballista This was asked years ago, but you can use tidyr::crossing()
to do a cross-join. Definitely the simplest solution of the bunch.
library(tidyr)
league <- c("MLB", "NHL", "NFL", "NBA")
season <- c("2018", "2017")
tidyr::crossing(league, season)
#> # A tibble: 8 x 2
#> league season
#> <chr> <chr>
#> 1 MLB 2017
#> 2 MLB 2018
#> 3 NBA 2017
#> 4 NBA 2018
#> 5 NFL 2017
#> 6 NFL 2018
#> 7 NHL 2017
#> 8 NHL 2018
Created on 2018-12-08 by the reprex package (v0.2.0).
base
function expand.grid
. The advantage crossing
has is that it works with data.frame
inputs (and the point of the question). Using the example from the accepted answer, x <- data.frame(id1 = c("a", "b", "c"), vals1 = 1:3); y <- data.frame(id2 = c("d", "e", "f"), vals2 = 4:6)
, then crossing(x, y)
works as expected, while expand.grid(x, y)
fails. –
Lympho merge()
–
Dysphonia If you want to do it via data.table, this is one way:
cjdt <- function(a,b){
cj = CJ(1:nrow(a),1:nrow(b))
cbind(a[cj[[1]],],b[cj[[2]],])
}
A = data.table(ida = 1:10)
B = data.table(idb = 1:10)
cjdt(A,B)
Having said the above, if you are doing many little joins, and you don't need a data.table
object and the overhead of producing it, a significant speed increase can be achieved by writing a c++
code block using Rcpp
and the like:
// [[Rcpp::export]]
NumericMatrix crossJoin(NumericVector a, NumericVector b){
int szA = a.size(),
szB = b.size();
int i,j,r;
NumericMatrix ret(szA*szB,2);
for(i = 0, r = 0; i < szA; i++){
for(j = 0; j < szB; j++, r++){
ret(r,0) = a(i);
ret(r,1) = b(j);
}
}
return ret;
}
C++
n = 1
a = runif(10000)
b = runif(10000)
system.time({for(i in 1:n){
crossJoin(a,b)
}})
user system elapsed 1.033 0.424 1.462
data.table
system.time({for(i in 1:n){
CJ(a,b)
}})
user system elapsed 0.602 0.569 2.452
C++
n = 1e5
a = runif(10)
b = runif(10)
system.time({for(i in 1:n){
crossJoin(a,b)
}})
user system elapsed 0.660 0.077 0.739
data.table
system.time({for(i in 1:n){
CJ(a,b)
}})
user system elapsed 26.164 0.056 26.271
CJ
or your solution address the problem in question. –
Hurless Using sqldf
:
x <- data.frame(id1 = c("a", "b", "c"), vals1 = 1:3)
y <- data.frame(id2 = c("d", "e", "f"), vals2 = 4:6)
library(sqldf)
sqldf("SELECT * FROM x
CROSS JOIN y")
Output:
id1 vals1 id2 vals2
1 a 1 d 4
2 a 1 e 5
3 a 1 f 6
4 b 2 d 4
5 b 2 e 5
6 b 2 f 6
7 c 3 d 4
8 c 3 e 5
9 c 3 f 6
Just for the record, with the base package, we can use the by=NULL
instead of all=TRUE
:
merge(x, y, by= NULL)
By using the merge function and its optional parameters:
Inner join: merge(df1, df2) will work for these examples because R automatically joins the frames by common variable names, but you would most likely want to specify merge(df1, df2, by = "CustomerId") to make sure that you were matching on only the fields you desired. You can also use the by.x and by.y parameters if the matching variables have different names in the different data frames.
Outer join: merge(x = df1, y = df2, by = "CustomerId", all = TRUE)
Left outer: merge(x = df1, y = df2, by = "CustomerId", all.x = TRUE)
Right outer: merge(x = df1, y = df2, by = "CustomerId", all.y = TRUE)
Cross join: merge(x = df1, y = df2, by = NULL)
For data.table use
dt1[, as.list(dt2), by = names(dt1)]
Note that this only works if there are no duplicate rows.
I don't know of a built-in way to do it with data.frame
's but it isn't hard to make.
@danas showed there is an easy built-in way, but I'll leave my answer here in case it is useful for other purposes.
cross.join <- function(a, b) {
idx <- expand.grid(seq(length=nrow(a)), seq(length=nrow(b)))
cbind(a[idx[,1],], b[idx[,2],])
}
and showing that it works with some built-in data sets:
> tmp <- cross.join(mtcars, iris)
> dim(mtcars)
[1] 32 11
> dim(iris)
[1] 150 5
> dim(tmp)
[1] 4800 16
> str(tmp)
'data.frame': 4800 obs. of 16 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp : num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat : num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec : num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear : num 4 4 4 3 3 3 3 4 4 4 ...
$ carb : num 4 4 1 1 2 1 4 2 2 4 ...
$ Sepal.Length: num 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 ...
$ Sepal.Width : num 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 ...
$ Petal.Length: num 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
I'd love to know if there exists a convenient way to crossjoin two data.tables. I do this so often I ended up rolling my own function that others may find helpful
library(data.table)
cartesian_join <- function(i, j){
# Cartesian join of two data.tables
# If i has M rows and j has N rows, the result will have M*N rows
# Example: cartesian_join(as.data.table(iris), as.data.table(mtcars))
# Check inputs
if(!is.data.table(i)) stop("'i' must be a data.table")
if(!is.data.table(j)) stop("'j' must be a data.table")
if(nrow(i) == 0) stop("'i' has 0 rows. Not sure how to handle cartesian join")
if(nrow(j) == 0) stop("'j' has 0 rows. Not sure how to handle cartesian join")
# Do the join (use a join column name that's unlikely to clash with a pre-existing column name)
i[, MrJoinyJoin := 1L]
j[, MrJoinyJoin := 1L]
result <- j[i, on = "MrJoinyJoin", allow.cartesian = TRUE]
result[, MrJoinyJoin := NULL]
i[, MrJoinyJoin := NULL]
j[, MrJoinyJoin := NULL]
return(result[])
}
foo <- data.frame(Foo = c(1,2,3))
foo
Foo
1 1
2 2
3 3
bar <- data.frame(Bar = c("a", "b", "c"))
bar
Bar
1 a
2 b
3 c
cartesian_join(as.data.table(foo), as.data.table(bar))
Bar Foo
1: a 1
2: b 1
3: c 1
4: a 2
5: b 2
6: c 2
7: a 3
8: b 3
9: c 3
dplyr solution:
You can perform a cross-join within dplyr joins (i.e. left_join
, inner_join
, etc.).
For example, according to the left_join
help:
"To perform a cross-join, generating all combinations of x and y, use by = character()
"
So you could use something like:
df3 <- left_join(df1, df2, by = character())
In dplyr
, there is cross_join
:
library(dplyr)
A <- data.frame(id1=letters[1:3],vals1=1:3)
B <- data.frame(id2=letters[4:7],vals2=4:7)
cross_join(A, B)
output
id1 vals1 id2 vals2
1 a 1 d 4
2 a 1 e 5
3 a 1 f 6
4 a 1 g 7
5 b 2 d 4
6 b 2 e 5
7 b 2 f 6
8 b 2 g 7
9 c 3 d 4
10 c 3 e 5
11 c 3 f 6
12 c 3 g 7
© 2022 - 2024 — McMap. All rights reserved.
tidyverse
or more specifically thedplyr
package you can simply do:full_join(df1, df2, by=character())
– Falsecarddata.table::foverlapse
– Eligible