Joe Duffy (author of Concurrent Programming on Windows) writes in this blog article that Thread.Sleep(1) is preferred over Thread.Sleep(0) because it will suspend for same and lower priority threads, not just equal priority threads as for Thread.Sleep(0).
The .NET version of MSDN says that Thread.Sleep(0) is special, it will suspend this thread and allow other waiting threads to execute. But it says nothing about Thread.Sleep(1) (for any .NET version).
So, is Thread.Sleep(1) actually doing anything special?
Background:
I'm refreshing my knowledge of concurrent programming. I wrote some C# code to visibly show that pre/post increments and decrements are non-atomic and therefore not thread-safe.
To avoid needing to create hundreds of threads I place a Thread.Sleep(0) after incrementing a shared variable to force the scheduler to run another thread. This regular swapping of threads makes the non-atomic nature of pre/post increment/decrement more obvious.
Thread.Sleep(0) appears to causes no additional delay, as expected. However if I change this to Thread.Sleep(1), it appears to revert to normal sleep behaviour (eg. I get roughly a minimum of 1ms delay).
This would mean that while Thread.Sleep(1) may be preferred, any code that uses it in a loop would run much slower.
This SO question "Could someone explain this interesting behaviour with Sleep(1)?" is sort of relevant, but it is C++ focused and just repeats the guidance in Joe Duffy's blog article.
Here's my code for anyone interested (copied from LinqPad, so you may need to add a class around it):
int x = 0;
void Main()
{
List<Thread> threadList=new List<Thread>();
Stopwatch sw=new Stopwatch();
for(int i=0; i<20; i++)
{
threadList.Add(new Thread(Go));
threadList[i].Priority=ThreadPriority.Lowest;
}
sw.Start();
foreach (Thread thread in threadList)
{
thread.Start();
}
foreach (Thread thread in threadList)
{
thread.Join();
}
sw.Stop();
Console.WriteLine(sw.ElapsedMilliseconds);
Thread.Sleep(200);
Console.WriteLine(x);
}
void Go()
{
for(int i=0;i<10000;i++)
{
x++;
Thread.Sleep(0);
}
}