When I run 2 random forests in caret, I get the exact same results if I set a random seed:
library(caret)
library(doParallel)
set.seed(42)
myControl <- trainControl(method='cv', index=createFolds(iris$Species))
set.seed(42)
model1 <- train(Species~., iris, method='rf', trControl=myControl)
set.seed(42)
model2 <- train(Species~., iris, method='rf', trControl=myControl)
> all.equal(predict(model1, type='prob'), predict(model2, type='prob'))
[1] TRUE
However, if I register a parallel back-end to speed up the modeling, I get a different result each time I run the model:
cl <- makeCluster(detectCores())
registerDoParallel(cl)
set.seed(42)
myControl <- trainControl(method='cv', index=createFolds(iris$Species))
set.seed(42)
model1 <- train(Species~., iris, method='rf', trControl=myControl)
set.seed(42)
model2 <- train(Species~., iris, method='rf', trControl=myControl)
stopCluster(cl)
> all.equal(predict(model1, type='prob'), predict(model2, type='prob'))
[1] "Component 2: Mean relative difference: 0.01813729"
[2] "Component 3: Mean relative difference: 0.02271638"
Is there any way to fix this issue? One suggestion was to use the doRNG package, but train
uses nested loops, which currently aren't supported:
library(doRNG)
cl <- makeCluster(detectCores())
registerDoParallel(cl)
registerDoRNG()
set.seed(42)
myControl <- trainControl(method='cv', index=createFolds(iris$Species))
set.seed(42)
> model1 <- train(Species~., iris, method='rf', trControl=myControl)
Error in list(e1 = list(args = seq(along = resampleIndex)(), argnames = "iter", :
nested/conditional foreach loops are not supported yet.
See the package's vignette for a work around.
UPDATE:
I thought this problem could be solved using doSNOW
and clusterSetupRNG
, but I couldn't quite get there.
set.seed(42)
library(caret)
library(doSNOW)
cl <- makeCluster(8, type = "SOCK")
registerDoSNOW(cl)
myControl <- trainControl(method='cv', index=createFolds(iris$Species))
clusterSetupRNG(cl, seed=rep(12345,6))
a <- clusterCall(cl, runif, 10000)
model1 <- train(Species~., iris, method='rf', trControl=myControl)
clusterSetupRNG(cl, seed=rep(12345,6))
b <- clusterCall(cl, runif, 10000)
model2 <- train(Species~., iris, method='rf', trControl=myControl)
all.equal(a, b)
[1] TRUE
all.equal(predict(model1, type='prob'), predict(model2, type='prob'))
[1] "Component 2: Mean relative difference: 0.01890339"
[2] "Component 3: Mean relative difference: 0.01656751"
stopCluster(cl)
What's special about foreach, and why doesn't it use the seeds I initiated on the cluster? objects a
and b
are identical, so why not model1
and model2
?
snow
would require modifying the caret source code, and usingdoRNG
fails. – Overcriticallibrary(doMC)
- see caret.r-forge.r-project.org/parallel.html – Dogmatize