Perhaps this is a very naive view and quite obvious things for gurus in programming. But for a beginner it may cause difficulties.
Let's take the "Rotations" code from The Book of Shaders and try to put it into Godot 3.5.
// Author @patriciogv ( patriciogonzalezvivo.com ) - 2015
#ifdef GL_ES
precision mediump float;
#endif
#define PI 3.14159265359
uniform vec2 u_resolution;
uniform float u_time;
mat2 rotate2d(float _angle){
return mat2(cos(_angle),-sin(_angle),
sin(_angle),cos(_angle));
}
float box(in vec2 _st, in vec2 _size){
_size = vec2(0.5) - _size*0.5;
vec2 uv = smoothstep(_size,
_size+vec2(0.001),
_st);
uv *= smoothstep(_size,
_size+vec2(0.001),
vec2(1.0)-_st);
return uv.x*uv.y;
}
float cross(in vec2 _st, float _size){
return box(_st, vec2(_size,_size/4.)) +
box(_st, vec2(_size/4.,_size));
}
void main(){
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);
// move space from the center to the vec2(0.0)
st -= vec2(0.5);
// rotate the space
st = rotate2d( sin(u_time)*PI ) * st;
// move it back to the original place
st += vec2(0.5);
// Show the coordinates of the space on the background
// color = vec3(st.x,st.y,0.0);
// Add the shape on the foreground
color += vec3(cross(st,0.4));
gl_FragColor = vec4(color,1.0);
}
Of course, using the hints from the official documentation.
Oops… code doesn't work.
What's the problem? There are a few of them.
The line is needed:
#define PI 3.14159265359
convert to
uniform float PI = 3.14159265359;
but this is simple enough.
matrix representation
return mat2(cos(_angle),-sin(_angle), sin(_angle),cos(_angle));
should be changed according to the rules of matrix representation in Godot:
return mat2(vec2(cos(_angle),-sin(_angle)), vec2(sin(_angle),cos(_angle)));
"cross" - must be renamed.
Here is a working shader:
shader_type canvas_item;
uniform float PI = 3.14159265359;
mat2 rotate2d(float _angle){
return mat2(vec2(cos(_angle),-sin(_angle)),
vec2(sin(_angle),cos(_angle)));
}
float box(in vec2 _st, in vec2 _size){
_size = vec2(0.5) - _size*0.5;
vec2 uv = smoothstep(_size,
_size+vec2(0.001),
_st);
uv *= smoothstep(_size,
_size+vec2(0.001),
vec2(1.0)-_st);
return uv.x*uv.y;
}
float crosst(in vec2 _st, float _size){
return box(_st, vec2(_size,_size/4.)) +
box(_st, vec2(_size/4.,_size));
}
void fragment(){
vec2 st = FRAGCOORD.xy/(1.0 / SCREEN_PIXEL_SIZE).xy;
vec3 color = vec3(0.0);
// move space from the center to the vec2(0.0)
st -= vec2(0.5);
// rotate the space
st = rotate2d( sin(TIME)*PI ) * st;
// move it back to the original place
st += vec2(0.5);
// Show the coordinates of the space on the background
// color = vec3(st.x,st.y,0.0);
// Add the shape on the foreground
color += vec3(crosst(st,0.4));
COLOR = vec4(color,1.0);
}
And in the example next "Other uses for matrices: YUV color", by analogy should be replaced:
// YUV to RGB matrix
mat3 yuv2rgb = mat3(1.0, 0.0, 1.13983,
1.0, -0.39465, -0.58060,
1.0, 2.03211, 0.0);
at:
// YUV to RGB matrix
uniform mat3 yuv2rgb = mat3(vec3(1.0, 0.0, 1.13983),
vec3(1.0, -0.39465, -0.58060),
vec3(1.0, 2.03211, 0.0));