I have a bunch of .RData time-series files and would like to load them directly into Python without first converting the files to some other extension (such as .csv). Any ideas on the best way to accomplish this?
People ask this sort of thing on the R-help and R-dev list and the usual answer is that the code is the documentation for the .RData
file format. So any other implementation in any other language is hard++.
I think the only reasonable way is to install RPy2 and use R's load
function from that, converting to appropriate python objects as you go. The .RData
file can contain structured objects as well as plain tables so watch out.
Linky: http://rpy.sourceforge.net/rpy2/doc-2.4/html/
Quicky:
>>> import rpy2.robjects as robjects
>>> robjects.r['load'](".RData")
objects are now loaded into the R workspace.
>>> robjects.r['y']
<FloatVector - Python:0x24c6560 / R:0xf1f0e0>
[0.763684, 0.086314, 0.617097, ..., 0.443631, 0.281865, 0.839317]
That's a simple scalar, d is a data frame, I can subset to get columns:
>>> robjects.r['d'][0]
<IntVector - Python:0x24c9248 / R:0xbbc6c0>
[ 1, 2, 3, ..., 8, 9, 10]
>>> robjects.r['d'][1]
<FloatVector - Python:0x24c93b0 / R:0xf1f230>
[0.975648, 0.597036, 0.254840, ..., 0.891975, 0.824879, 0.870136]
np.array( r['d'] )
and I don't have ri2numpy
in numpy2ri
anymore. –
Baluster As an alternative for those who would prefer not having to install R in order to accomplish this task (r2py requires it), there is a new package "pyreadr" which allows reading RData and Rds files directly into python without dependencies.
It is a wrapper around the C library librdata, so it is very fast.
You can install it easily with pip:
pip install pyreadr
As an example you would do:
import pyreadr
result = pyreadr.read_r('/path/to/file.RData') # also works for Rds
# done! let's see what we got
# result is a dictionary where keys are the name of objects and the values python
# objects
print(result.keys()) # let's check what objects we got
df1 = result["df1"] # extract the pandas data frame for object df1
The repo is here: https://github.com/ofajardo/pyreadr
Disclaimer: I am the developer of this package.
pip install readr
and conda install -c conda-forge pyreadr
. I managed to import RData into python as an OrderedDict
but I cannot access the data inside. Even with a basic 3x2 RData file df.keys()
yields odict_keys([None])
. Has something changed in Python or R that you need to update or am I missing something. –
Conspiracy LibrdataError: Unable to convert string to the requested encoding
when trying to read a .RData
file. Different .RData
files work, but the one with the data in the format I need doesn't load in, go figure! Any common reasons as to why this might happen? –
Gonna People ask this sort of thing on the R-help and R-dev list and the usual answer is that the code is the documentation for the .RData
file format. So any other implementation in any other language is hard++.
I think the only reasonable way is to install RPy2 and use R's load
function from that, converting to appropriate python objects as you go. The .RData
file can contain structured objects as well as plain tables so watch out.
Linky: http://rpy.sourceforge.net/rpy2/doc-2.4/html/
Quicky:
>>> import rpy2.robjects as robjects
>>> robjects.r['load'](".RData")
objects are now loaded into the R workspace.
>>> robjects.r['y']
<FloatVector - Python:0x24c6560 / R:0xf1f0e0>
[0.763684, 0.086314, 0.617097, ..., 0.443631, 0.281865, 0.839317]
That's a simple scalar, d is a data frame, I can subset to get columns:
>>> robjects.r['d'][0]
<IntVector - Python:0x24c9248 / R:0xbbc6c0>
[ 1, 2, 3, ..., 8, 9, 10]
>>> robjects.r['d'][1]
<FloatVector - Python:0x24c93b0 / R:0xf1f230>
[0.975648, 0.597036, 0.254840, ..., 0.891975, 0.824879, 0.870136]
from rpy2.robjects import numpy2ri
and then numpy2ri.ri2numpy(r['d'])
. You then have numpy arrays that you can manipulate in a "pythonic" way. –
Tore np.array( r['d'] )
and I don't have ri2numpy
in numpy2ri
anymore. –
Baluster Well, I couple years ago I had the same problem as you. I wanted to read .RData
files from a library that I was developing. I considered using RPy2, but that would have forced me to release my library with a GPL license, which I did not want to do.
"pyreadr" didn't even exist then. Also, the datasets which I wanted to load were not in a standardized format as a data.frame
.
I came to this question and read Spacedman answer. In particular, I saw the line
So any other implementation in any other language is hard++.
as a challenge, and implemented the package rdata in a couple of days as a result. This is a very small pure Python implementation of a .RData
parser and converter, able to suit my needs until now. The steps of parsing the original objects and converting to apropriate Python objects are separated, so that users could use a different conversion if they want. Moreover, users can add constructors for custom R classes.
This is an usage example:
>>> import rdata
>>> parsed = rdata.parser.parse_file(rdata.TESTDATA_PATH / "test_vector.rda")
>>> converted = rdata.conversion.convert(parsed)
>>> converted
{'test_vector': array([1., 2., 3.])}
As I said, I developed this package and have been used since without problems, but I did not bother to give it visibility as I did not document it properly. This has recently changed and now the documentation is mostly ok, so here it is for anyone interested:
Jupyter Notebook Users
If you are using Jupyter notebook, you need to do 2 steps:
Step 1: go to http://www.lfd.uci.edu/~gohlke/pythonlibs/#rpy2 and download Python interface to the R language (embedded R) in my case I will use rpy2-2.8.6-cp36-cp36m-win_amd64.whl
Put this file in the same working directory you are currently in.
Step 2: Go to your Jupyter notebook and write the following commands
# This is to install rpy2 library in Anaconda
!pip install rpy2-2.8.6-cp36-cp36m-win_amd64.whl
and then
# This is important if you will be using rpy2
import os
os.environ['R_USER'] = 'D:\Anaconda3\Lib\site-packages\rpy2'
and then
import rpy2.robjects as robjects
from rpy2.robjects import pandas2ri
pandas2ri.activate()
This should allow you to use R functions in python. Now you have to import the readRDS
as follow
readRDS = robjects.r['readRDS']
df = readRDS('Data1.rds')
df = pandas2ri.ri2py(df)
df.head()
Congratulations! now you have the Dataframe you wanted
However, I advise you to save it in pickle file for later time usage in python as
df.to_pickle('Data1')
So next time you may simply use it by
df1=pd.read_pickle('Data1')
There is a third party library called rpy
, and you can use this library to load .RData
files. You can get this via a pip
install pip instally rpy
will do the trick, if you don't have rpy
, then I suggest that you take a look at how to install it. Otherwise, you can simple do:
from rpy import *
r.load("file name here")
EDIT:
It seems like I'm a little old school there,s rpy2 now, so you can use that.
rpy
? That's groovy. –
Hitoshi Answer by @rsc05 that caters to the Notebook users worked for me, but apparently one of the functions[df = pandas2ri.ri2py(df)
] has been deprecated and now it should be df = pandas2ri.rpy2py(df)
.
So, the complete solution should look like :
# import the libraries
>> import rpy2.robjects as robjects
>> from rpy2.robjects import pandas2ri
#activate
>> pandas2ri.activate()
# create readRDS object
>> readRDS = robjects.r['readRDS']
# read .rds using readRDS object
>> df = readRDS('sri_testing_data.rds')
# convert the data into native dataframe object
>> df = pandas2ri.rpy2py(df)
#print the dataframe
>> df.head()
Try this
!pip install pyreadr
Then
result = pyreadr.read_r('/content/nGramsLite.RData')
# objects
print(result.keys()) # let's check what objects we got
>>>odict_keys(['ngram1', 'ngram2', 'ngram3', 'ngram4'])
df1 = result["ngram1"]
df1.head()
Done!!
© 2022 - 2024 — McMap. All rights reserved.
from rpy2.robjects import numpy2ri
and thennumpy2ri.ri2numpy(r['d'])
. You then have numpy arrays that you can manipulate in a "pythonic" way. – Tore