How do I make function decorators and chain them together?
Asked Answered
O

22

3158

How do I make two decorators in Python that would do the following?

@make_bold
@make_italic
def say():
   return "Hello"

Calling say() should return:

"<b><i>Hello</i></b>"
Owl answered 11/4, 2009 at 7:5 Comment(1)
See also: What does the "at" (@) symbol do in Python?Gilberte
E
3090

Check out the documentation to see how decorators work. Here is what you asked for:

from functools import wraps

def makebold(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        return "<b>" + fn(*args, **kwargs) + "</b>"
    return wrapper

def makeitalic(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        return "<i>" + fn(*args, **kwargs) + "</i>"
    return wrapper

@makebold
@makeitalic
def hello():
    return "hello world"

@makebold
@makeitalic
def log(s):
    return s

print hello()        # returns "<b><i>hello world</i></b>"
print hello.__name__ # with functools.wraps() this returns "hello"
print log('hello')   # returns "<b><i>hello</i></b>"
Ezana answered 11/4, 2009 at 7:16 Comment(3)
Consider using functools.wraps or, better yet, the decorator module from PyPI: they preserve certain important metadata (such as __name__ and, speaking about the decorator package, function signature).Bibliology
*argsand **kwargs should be added in the answer. Decorated function can have arguments, and they will be lost if not specified.Chockfull
Although this answer has the great advantage of only using the stdlib, and works for this simple example where there are no decorator arguments nor decorated function arguments, it has 3 major limitations: (1) no simple support for optional decorator arguments (2) not signature-preserving (3) no simple way to extract a named argument from *args, **kwargs. An easy way to solve these 3 issues at once is to use decopatch as explained here. You can also use decorator as already mentioned by Marius Gedminas, to solve points 2 and 3.Horizontal
S
4791

If you are not into long explanations, see Paolo Bergantino’s answer.

Decorator Basics

Python’s functions are objects

To understand decorators, you must first understand that functions are objects in Python. This has important consequences. Let’s see why with a simple example :

def shout(word="yes"):
    return word.capitalize()+"!"

print(shout())
# outputs : 'Yes!'

# As an object, you can assign the function to a variable like any other object 
scream = shout

# Notice we don't use parentheses: we are not calling the function,
# we are putting the function "shout" into the variable "scream".
# It means you can then call "shout" from "scream":

print(scream())
# outputs : 'Yes!'

# More than that, it means you can remove the old name 'shout',
# and the function will still be accessible from 'scream'

del shout
try:
    print(shout())
except NameError as e:
    print(e)
    #outputs: "name 'shout' is not defined"

print(scream())
# outputs: 'Yes!'

Keep this in mind. We’ll circle back to it shortly.

Another interesting property of Python functions is they can be defined inside another function!

def talk():

    # You can define a function on the fly in "talk" ...
    def whisper(word="yes"):
        return word.lower()+"..."

    # ... and use it right away!
    print(whisper())

# You call "talk", that defines "whisper" EVERY TIME you call it, then
# "whisper" is called in "talk". 
talk()
# outputs: 
# "yes..."

# But "whisper" DOES NOT EXIST outside "talk":

try:
    print(whisper())
except NameError as e:
    print(e)
    #outputs : "name 'whisper' is not defined"*
    #Python's functions are objects

Functions references

Okay, still here? Now the fun part...

You’ve seen that functions are objects. Therefore, functions:

  • can be assigned to a variable
  • can be defined in another function

That means that a function can return another function.

def getTalk(kind="shout"):

    # We define functions on the fly
    def shout(word="yes"):
        return word.capitalize()+"!"

    def whisper(word="yes") :
        return word.lower()+"..."

    # Then we return one of them
    if kind == "shout":
        # We don't use "()", we are not calling the function,
        # we are returning the function object
        return shout  
    else:
        return whisper

# How do you use this strange beast?

# Get the function and assign it to a variable
talk = getTalk()      

# You can see that "talk" is here a function object:
print(talk)
#outputs : <function shout at 0xb7ea817c>

# The object is the one returned by the function:
print(talk())
#outputs : Yes!

# And you can even use it directly if you feel wild:
print(getTalk("whisper")())
#outputs : yes...

There’s more!

If you can return a function, you can pass one as a parameter:

def doSomethingBefore(func): 
    print("I do something before then I call the function you gave me")
    print(func())

doSomethingBefore(scream)
#outputs: 
#I do something before then I call the function you gave me
#Yes!

Well, you just have everything needed to understand decorators. You see, decorators are “wrappers”, which means that they let you execute code before and after the function they decorate without modifying the function itself.

Handcrafted decorators

How you’d do it manually:

# A decorator is a function that expects ANOTHER function as parameter
def my_shiny_new_decorator(a_function_to_decorate):

    # Inside, the decorator defines a function on the fly: the wrapper.
    # This function is going to be wrapped around the original function
    # so it can execute code before and after it.
    def the_wrapper_around_the_original_function():

        # Put here the code you want to be executed BEFORE the original function is called
        print("Before the function runs")

        # Call the function here (using parentheses)
        a_function_to_decorate()

        # Put here the code you want to be executed AFTER the original function is called
        print("After the function runs")

    # At this point, "a_function_to_decorate" HAS NEVER BEEN EXECUTED.
    # We return the wrapper function we have just created.
    # The wrapper contains the function and the code to execute before and after. It’s ready to use!
    return the_wrapper_around_the_original_function

# Now imagine you create a function you don't want to ever touch again.
def a_stand_alone_function():
    print("I am a stand alone function, don't you dare modify me")

a_stand_alone_function() 
#outputs: I am a stand alone function, don't you dare modify me

# Well, you can decorate it to extend its behavior.
# Just pass it to the decorator, it will wrap it dynamically in 
# any code you want and return you a new function ready to be used:

a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

Now, you probably want that every time you call a_stand_alone_function, a_stand_alone_function_decorated is called instead. That’s easy, just overwrite a_stand_alone_function with the function returned by my_shiny_new_decorator:

a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

# That’s EXACTLY what decorators do!

Decorators demystified

The previous example, using the decorator syntax:

@my_shiny_new_decorator
def another_stand_alone_function():
    print("Leave me alone")

another_stand_alone_function()  
#outputs:  
#Before the function runs
#Leave me alone
#After the function runs

Yes, that’s all, it’s that simple. @decorator is just a shortcut to:

another_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)

Decorators are just a pythonic variant of the decorator design pattern. There are several classic design patterns embedded in Python to ease development (like iterators).

Of course, you can accumulate decorators:

def bread(func):
    def wrapper():
        print("</''''''\>")
        func()
        print("<\______/>")
    return wrapper

def ingredients(func):
    def wrapper():
        print("#tomatoes#")
        func()
        print("~salad~")
    return wrapper

def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs: --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

Using the Python decorator syntax:

@bread
@ingredients
def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

The order you set the decorators MATTERS:

@ingredients
@bread
def strange_sandwich(food="--ham--"):
    print(food)

strange_sandwich()
#outputs:
##tomatoes#
#</''''''\>
# --ham--
#<\______/>
# ~salad~

Now: to answer the question...

As a conclusion, you can easily see how to answer the question:

# The decorator to make it bold
def makebold(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "<b>" + fn() + "</b>"
    return wrapper

# The decorator to make it italic
def makeitalic(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "<i>" + fn() + "</i>"
    return wrapper

@makebold
@makeitalic
def say():
    return "hello"

print(say())
#outputs: <b><i>hello</i></b>

# This is the exact equivalent to 
def say():
    return "hello"
say = makebold(makeitalic(say))

print(say())
#outputs: <b><i>hello</i></b>

You can now just leave happy, or burn your brain a little bit more and see advanced uses of decorators.


Taking decorators to the next level

Passing arguments to the decorated function

# It’s not black magic, you just have to let the wrapper 
# pass the argument:

def a_decorator_passing_arguments(function_to_decorate):
    def a_wrapper_accepting_arguments(arg1, arg2):
        print("I got args! Look: {0}, {1}".format(arg1, arg2))
        function_to_decorate(arg1, arg2)
    return a_wrapper_accepting_arguments

# Since when you are calling the function returned by the decorator, you are
# calling the wrapper, passing arguments to the wrapper will let it pass them to 
# the decorated function

@a_decorator_passing_arguments
def print_full_name(first_name, last_name):
    print("My name is {0} {1}".format(first_name, last_name))
    
print_full_name("Peter", "Venkman")
# outputs:
#I got args! Look: Peter Venkman
#My name is Peter Venkman

Decorating methods

One nifty thing about Python is that methods and functions are really the same. The only difference is that methods expect that their first argument is a reference to the current object (self).

That means you can build a decorator for methods the same way! Just remember to take self into consideration:

def method_friendly_decorator(method_to_decorate):
    def wrapper(self, lie):
        lie = lie - 3 # very friendly, decrease age even more :-)
        return method_to_decorate(self, lie)
    return wrapper
    
    
class Lucy(object):
    
    def __init__(self):
        self.age = 32
    
    @method_friendly_decorator
    def sayYourAge(self, lie):
        print("I am {0}, what did you think?".format(self.age + lie))
        
l = Lucy()
l.sayYourAge(-3)
#outputs: I am 26, what did you think?

If you’re making general-purpose decorator--one you’ll apply to any function or method, no matter its arguments--then just use *args, **kwargs:

def a_decorator_passing_arbitrary_arguments(function_to_decorate):
    # The wrapper accepts any arguments
    def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
        print("Do I have args?:")
        print(args)
        print(kwargs)
        # Then you unpack the arguments, here *args, **kwargs
        # If you are not familiar with unpacking, check:
        # http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
        function_to_decorate(*args, **kwargs)
    return a_wrapper_accepting_arbitrary_arguments

@a_decorator_passing_arbitrary_arguments
def function_with_no_argument():
    print("Python is cool, no argument here.")

function_with_no_argument()
#outputs
#Do I have args?:
#()
#{}
#Python is cool, no argument here.

@a_decorator_passing_arbitrary_arguments
def function_with_arguments(a, b, c):
    print(a, b, c)
    
function_with_arguments(1,2,3)
#outputs
#Do I have args?:
#(1, 2, 3)
#{}
#1 2 3 
 
@a_decorator_passing_arbitrary_arguments
def function_with_named_arguments(a, b, c, platypus="Why not ?"):
    print("Do {0}, {1} and {2} like platypus? {3}".format(a, b, c, platypus))

function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
#outputs
#Do I have args ? :
#('Bill', 'Linus', 'Steve')
#{'platypus': 'Indeed!'}
#Do Bill, Linus and Steve like platypus? Indeed!

class Mary(object):
    
    def __init__(self):
        self.age = 31
    
    @a_decorator_passing_arbitrary_arguments
    def sayYourAge(self, lie=-3): # You can now add a default value
        print("I am {0}, what did you think?".format(self.age + lie))

m = Mary()
m.sayYourAge()
#outputs
# Do I have args?:
#(<__main__.Mary object at 0xb7d303ac>,)
#{}
#I am 28, what did you think?

Passing arguments to the decorator

Great, now what would you say about passing arguments to the decorator itself?

This can get somewhat twisted, since a decorator must accept a function as an argument. Therefore, you cannot pass the decorated function’s arguments directly to the decorator.

Before rushing to the solution, let’s write a little reminder:

# Decorators are ORDINARY functions
def my_decorator(func):
    print("I am an ordinary function")
    def wrapper():
        print("I am function returned by the decorator")
        func()
    return wrapper

# Therefore, you can call it without any "@"

def lazy_function():
    print("zzzzzzzz")

decorated_function = my_decorator(lazy_function)
#outputs: I am an ordinary function
            
# It outputs "I am an ordinary function", because that’s just what you do:
# calling a function. Nothing magic.

@my_decorator
def lazy_function():
    print("zzzzzzzz")
    
#outputs: I am an ordinary function

It’s exactly the same. "my_decorator" is called. So when you @my_decorator, you are telling Python to call the function 'labelled by the variable "my_decorator"'.

This is important! The label you give can point directly to the decorator—or not.

Let’s get evil. ☺

def decorator_maker():
    
    print("I make decorators! I am executed only once: "
          "when you make me create a decorator.")
            
    def my_decorator(func):
        
        print("I am a decorator! I am executed only when you decorate a function.")
               
        def wrapped():
            print("I am the wrapper around the decorated function. "
                  "I am called when you call the decorated function. "
                  "As the wrapper, I return the RESULT of the decorated function.")
            return func()
        
        print("As the decorator, I return the wrapped function.")
        
        return wrapped
    
    print("As a decorator maker, I return a decorator")
    return my_decorator
            
# Let’s create a decorator. It’s just a new function after all.
new_decorator = decorator_maker()       
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator

# Then we decorate the function
            
def decorated_function():
    print("I am the decorated function.")
   
decorated_function = new_decorator(decorated_function)
#outputs:
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function
     
# Let’s call the function:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

No surprise here.

Let’s do EXACTLY the same thing, but skip all the pesky intermediate variables:

def decorated_function():
    print("I am the decorated function.")
decorated_function = decorator_maker()(decorated_function)
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

# Finally:
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Let’s make it even shorter:

@decorator_maker()
def decorated_function():
    print("I am the decorated function.")
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

#Eventually: 
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Hey, did you see that? We used a function call with the "@" syntax! :-)

So, back to decorators with arguments. If we can use functions to generate the decorator on the fly, we can pass arguments to that function, right?

def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):
    
    print("I make decorators! And I accept arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
            
    def my_decorator(func):
        # The ability to pass arguments here is a gift from closures.
        # If you are not comfortable with closures, you can assume it’s ok,
        # or read: https://mcmap.net/q/25723/-can-you-explain-closures-as-they-relate-to-python
        print("I am the decorator. Somehow you passed me arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
               
        # Don't confuse decorator arguments and function arguments!
        def wrapped(function_arg1, function_arg2) :
            print("I am the wrapper around the decorated function.\n"
                  "I can access all the variables\n"
                  "\t- from the decorator: {0} {1}\n"
                  "\t- from the function call: {2} {3}\n"
                  "Then I can pass them to the decorated function"
                  .format(decorator_arg1, decorator_arg2,
                          function_arg1, function_arg2))
            return func(function_arg1, function_arg2)
        
        return wrapped
    
    return my_decorator

@decorator_maker_with_arguments("Leonard", "Sheldon")
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments: {0}"
           " {1}".format(function_arg1, function_arg2))
          
decorated_function_with_arguments("Rajesh", "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Sheldon
#I am the decorator. Somehow you passed me arguments: Leonard Sheldon
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Sheldon 
#   - from the function call: Rajesh Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only knows about my arguments: Rajesh Howard

Here it is: a decorator with arguments. Arguments can be set as variable:

c1 = "Penny"
c2 = "Leslie"

@decorator_maker_with_arguments("Leonard", c1)
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments:"
           " {0} {1}".format(function_arg1, function_arg2))

decorated_function_with_arguments(c2, "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Penny
#I am the decorator. Somehow you passed me arguments: Leonard Penny
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Penny 
#   - from the function call: Leslie Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only know about my arguments: Leslie Howard

As you can see, you can pass arguments to the decorator like any function using this trick. You can even use *args, **kwargs if you wish. But remember decorators are called only once. Just when Python imports the script. You can't dynamically set the arguments afterwards. When you do "import x", the function is already decorated, so you can't change anything.


Let’s practice: decorating a decorator

Okay, as a bonus, I'll give you a snippet to make any decorator accept generically any argument. After all, in order to accept arguments, we created our decorator using another function.

We wrapped the decorator.

Anything else we saw recently that wrapped function?

Oh yes, decorators!

Let’s have some fun and write a decorator for the decorators:

def decorator_with_args(decorator_to_enhance):
    """ 
    This function is supposed to be used as a decorator.
    It must decorate an other function, that is intended to be used as a decorator.
    Take a cup of coffee.
    It will allow any decorator to accept an arbitrary number of arguments,
    saving you the headache to remember how to do that every time.
    """
    
    # We use the same trick we did to pass arguments
    def decorator_maker(*args, **kwargs):
       
        # We create on the fly a decorator that accepts only a function
        # but keeps the passed arguments from the maker.
        def decorator_wrapper(func):
       
            # We return the result of the original decorator, which, after all, 
            # IS JUST AN ORDINARY FUNCTION (which returns a function).
            # Only pitfall: the decorator must have this specific signature or it won't work:
            return decorator_to_enhance(func, *args, **kwargs)
        
        return decorator_wrapper
    
    return decorator_maker
       

It can be used as follows:

# You create the function you will use as a decorator. And stick a decorator on it :-)
# Don't forget, the signature is "decorator(func, *args, **kwargs)"
@decorator_with_args 
def decorated_decorator(func, *args, **kwargs): 
    def wrapper(function_arg1, function_arg2):
        print("Decorated with {0} {1}".format(args, kwargs))
        return func(function_arg1, function_arg2)
    return wrapper
    
# Then you decorate the functions you wish with your brand new decorated decorator.

@decorated_decorator(42, 404, 1024)
def decorated_function(function_arg1, function_arg2):
    print("Hello {0} {1}".format(function_arg1, function_arg2))

decorated_function("Universe and", "everything")
#outputs:
#Decorated with (42, 404, 1024) {}
#Hello Universe and everything

# Whoooot!

I know, the last time you had this feeling, it was after listening a guy saying: "before understanding recursion, you must first understand recursion". But now, don't you feel good about mastering this?


Best practices: decorators

  • Decorators were introduced in Python 2.4, so be sure your code will be run on >= 2.4.
  • Decorators slow down the function call. Keep that in mind.
  • You cannot un-decorate a function. (There are hacks to create decorators that can be removed, but nobody uses them.) So once a function is decorated, it’s decorated for all the code.
  • Decorators wrap functions, which can make them hard to debug. (This gets better from Python >= 2.5; see below.)

The functools module was introduced in Python 2.5. It includes the function functools.wraps(), which copies the name, module, and docstring of the decorated function to its wrapper.

(Fun fact: functools.wraps() is a decorator! ☺)

# For debugging, the stacktrace prints you the function __name__
def foo():
    print("foo")
    
print(foo.__name__)
#outputs: foo
    
# With a decorator, it gets messy    
def bar(func):
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: wrapper

# "functools" can help for that

import functools

def bar(func):
    # We say that "wrapper", is wrapping "func"
    # and the magic begins
    @functools.wraps(func)
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: foo

How can the decorators be useful?

Now the big question: What can I use decorators for?

Seem cool and powerful, but a practical example would be great. Well, there are 1000 possibilities. Classic uses are extending a function behavior from an external lib (you can't modify it), or for debugging (you don't want to modify it because it’s temporary).

You can use them to extend several functions in a DRY’s way, like so:

def benchmark(func):
    """
    A decorator that prints the time a function takes
    to execute.
    """
    import time
    def wrapper(*args, **kwargs):
        t = time.clock()
        res = func(*args, **kwargs)
        print("{0} {1}".format(func.__name__, time.clock()-t))
        return res
    return wrapper


def logging(func):
    """
    A decorator that logs the activity of the script.
    (it actually just prints it, but it could be logging!)
    """
    def wrapper(*args, **kwargs):
        res = func(*args, **kwargs)
        print("{0} {1} {2}".format(func.__name__, args, kwargs))
        return res
    return wrapper


def counter(func):
    """
    A decorator that counts and prints the number of times a function has been executed
    """
    def wrapper(*args, **kwargs):
        wrapper.count = wrapper.count + 1
        res = func(*args, **kwargs)
        print("{0} has been used: {1}x".format(func.__name__, wrapper.count))
        return res
    wrapper.count = 0
    return wrapper

@counter
@benchmark
@logging
def reverse_string(string):
    return str(reversed(string))

print(reverse_string("Able was I ere I saw Elba"))
print(reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!"))

#outputs:
#reverse_string ('Able was I ere I saw Elba',) {}
#wrapper 0.0
#wrapper has been used: 1x 
#ablE was I ere I saw elbA
#reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {}
#wrapper 0.0
#wrapper has been used: 2x
#!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A

Of course the good thing with decorators is that you can use them right away on almost anything without rewriting. DRY, I said:

@counter
@benchmark
@logging
def get_random_futurama_quote():
    from urllib import urlopen
    result = urlopen("http://subfusion.net/cgi-bin/quote.pl?quote=futurama").read()
    try:
        value = result.split("<br><b><hr><br>")[1].split("<br><br><hr>")[0]
        return value.strip()
    except:
        return "No, I'm ... doesn't!"

    
print(get_random_futurama_quote())
print(get_random_futurama_quote())

#outputs:
#get_random_futurama_quote () {}
#wrapper 0.02
#wrapper has been used: 1x
#The laws of science be a harsh mistress.
#get_random_futurama_quote () {}
#wrapper 0.01
#wrapper has been used: 2x
#Curse you, merciful Poseidon!

Python itself provides several decorators: property, staticmethod, etc.

  • Django uses decorators to manage caching and view permissions.
  • Twisted to fake inlining asynchronous functions calls.

This really is a large playground.

Saberhagen answered 11/4, 2009 at 7:5 Comment(6)
"You cannot un-decorate a function." - While normally true, it is possible to reach inside the closure in the function return by a decorator (i.e. via its __closure__ attribute) to pull out the original undecorated function. One example usage is documented in this answer which covers how it is possible to inject a decorator function in a lower level in limited circumstances.Frequent
While this is a great answer, I think it is a bit misleading in some ways. Python's @decorator syntax is probably most often used to replace a function with a wrapper closure (as the answer describes). But it can also replace the function with something else. The builtin property, classmethod and staticmethod decorators replace the function with a descriptor, for example. A decorator can also do something with a function, such as saving a reference to it in a registry of some sort, then return it, unmodified, without any wrapper.Highclass
The only thing missing is how to test a function that has been created as decorator (if that makes sense).Karmakarmadharaya
functools.wraps sets the attribute __wrapped__ on the wrapper function, to allow retrieving the original wrapped function. That’s more reliable than looking at closed-over variables.Motor
Adding on to what Blckknght said, a decorator doesn't just return something else, it can return any object.Mahler
Is there a way to preserve the agument information about the decorated function when stacking decorators so that inspect.getfullargspec(decoratee) would yield useful results?Naphtha
E
3090

Check out the documentation to see how decorators work. Here is what you asked for:

from functools import wraps

def makebold(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        return "<b>" + fn(*args, **kwargs) + "</b>"
    return wrapper

def makeitalic(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        return "<i>" + fn(*args, **kwargs) + "</i>"
    return wrapper

@makebold
@makeitalic
def hello():
    return "hello world"

@makebold
@makeitalic
def log(s):
    return s

print hello()        # returns "<b><i>hello world</i></b>"
print hello.__name__ # with functools.wraps() this returns "hello"
print log('hello')   # returns "<b><i>hello</i></b>"
Ezana answered 11/4, 2009 at 7:16 Comment(3)
Consider using functools.wraps or, better yet, the decorator module from PyPI: they preserve certain important metadata (such as __name__ and, speaking about the decorator package, function signature).Bibliology
*argsand **kwargs should be added in the answer. Decorated function can have arguments, and they will be lost if not specified.Chockfull
Although this answer has the great advantage of only using the stdlib, and works for this simple example where there are no decorator arguments nor decorated function arguments, it has 3 major limitations: (1) no simple support for optional decorator arguments (2) not signature-preserving (3) no simple way to extract a named argument from *args, **kwargs. An easy way to solve these 3 issues at once is to use decopatch as explained here. You can also use decorator as already mentioned by Marius Gedminas, to solve points 2 and 3.Horizontal
P
159

Alternatively, you could write a factory function which return a decorator which wraps the return value of the decorated function in a tag passed to the factory function. For example:

from functools import wraps

def wrap_in_tag(tag):
    def factory(func):
        @wraps(func)
        def decorator():
            return '<%(tag)s>%(rv)s</%(tag)s>' % (
                {'tag': tag, 'rv': func()})
        return decorator
    return factory

This enables you to write:

@wrap_in_tag('b')
@wrap_in_tag('i')
def say():
    return 'hello'

or

makebold = wrap_in_tag('b')
makeitalic = wrap_in_tag('i')

@makebold
@makeitalic
def say():
    return 'hello'

Personally I would have written the decorator somewhat differently:

from functools import wraps

def wrap_in_tag(tag):
    def factory(func):
        @wraps(func)
        def decorator(val):
            return func('<%(tag)s>%(val)s</%(tag)s>' %
                        {'tag': tag, 'val': val})
        return decorator
    return factory

which would yield:

@wrap_in_tag('b')
@wrap_in_tag('i')
def say(val):
    return val
say('hello')

Don't forget the construction for which decorator syntax is a shorthand:

say = wrap_in_tag('b')(wrap_in_tag('i')(say)))
Progression answered 11/4, 2009 at 7:5 Comment(1)
In my opinion, it is better to avoid more than one decorator as far as possible. If i had to write a factory function i would code it with *kwargs like def wrap_in_tag(*kwargs) then @wrap_in_tag('b','i')Apologetic
E
145

Decorators are just syntactical sugar.

This

@decorator
def func():
    ...

expands to

def func():
    ...
func = decorator(func)
Electrophorus answered 11/4, 2009 at 8:0 Comment(7)
This is so elegant, simple, easy to understand. 10000 upvotes for you, Sir Ockham.Adama
Great and simple answer. Would like to add that when using @decorator() (instead of @decorator) it is syntactic sugar for func = decorator()(func). This is also common practice when you need to generate decorators "on the fly"Grisaille
@OmerDagan this is not syntactic sugar, but just regular python code. In the generator (after the @ sign) you can put a regular python expression that yields a decorator function.Avila
In func = decorator(func), must the variable name be func which is also the original function name? Can var = decorator(func) also work?Bishopric
Yes. The left hand side variable name and the right hand side variable name need not be the same; decorator(func) is assigned to var. If they are the same then func is overwritten. Else not.Corie
Put a different way, if you want func to be overwritten then @decorator is elegant shorthand. If you don't then var = decorator(func) has to be written out in detail.Corie
I fail to see how this actually answers the original post about chaining decorators together. Downvote (8^((.Tilbury
B
74

And of course you can return lambdas as well from a decorator function:

def makebold(f): 
    return lambda: "<b>" + f() + "</b>"
def makeitalic(f): 
    return lambda: "<i>" + f() + "</i>"

@makebold
@makeitalic
def say():
    return "Hello"

print say()
Biquarterly answered 25/10, 2010 at 6:18 Comment(5)
And one step further: makebold = lambda f : lambda "<b>" + f() + "</b>"Frohne
@Robᵩ: To be syntactically correct: makebold = lambda f: lambda: "<b>" + f() + "</b>"Danette
Late to the party, but I really would suggest makebold = lambda f: lambda *a, **k: "<b>" + f(*a, **k) + "</b>"Straight
This needs functools.wraps in order to not discard the docstring / signature / name of sayFriesland
Well, what matters is whether it's mentioned in your answer. Having @wraps somewhere else on this page isn't going to help me when I print help(say) and get "Help on function <lambda>` instead of "Help on function say".Friesland
U
67

Python decorators add extra functionality to another function

An italics decorator could be like

def makeitalic(fn):
    def newFunc():
        return "<i>" + fn() + "</i>"
    return newFunc

Note that a function is defined inside a function. What it basically does is replace a function with the newly defined one. For example, I have this class

class foo:
    def bar(self):
        print "hi"
    def foobar(self):
        print "hi again"

Now say, I want both functions to print "---" after and before they are done. I could add a print "---" before and after each print statement. But because I don't like repeating myself, I will make a decorator

def addDashes(fn): # notice it takes a function as an argument
    def newFunction(self): # define a new function
        print "---"
        fn(self) # call the original function
        print "---"
    return newFunction
    # Return the newly defined function - it will "replace" the original

So now I can change my class to

class foo:
    @addDashes
    def bar(self):
        print "hi"

    @addDashes
    def foobar(self):
        print "hi again"

For more on decorators, check http://www.ibm.com/developerworks/linux/library/l-cpdecor.html

Uncut answered 11/4, 2009 at 7:19 Comment(5)
Note as elegant as the lambda functions proposed by @Rune KaagaardRondeau
@Phoenix: The self argument is needed because the newFunction() defined in addDashes() was specifically designed to be a method decorator not a general function decorator. The self argument represents the class instance and is passed to class methods whether they use it or not -- see the section titled Decorating methods in @e-satis's answer.Danette
Print the output as well please.Azotobacter
Missing functools.wrapsFriesland
The link to the IBM website is out-of-date clickbait. Please update the link or delete it. It goes nowhere except into the Big Blue Linux Developer Hole. Thank you.Tilbury
D
44

You could make two separate decorators that do what you want as illustrated directly below. Note the use of *args, **kwargs in the declaration of the wrapped() function which supports the decorated function having multiple arguments (which isn't really necessary for the example say() function, but is included for generality).

For similar reasons, the functools.wraps decorator is used to change the meta attributes of the wrapped function to be those of the one being decorated. This makes error messages and embedded function documentation (func.__doc__) be those of the decorated function instead of wrapped()'s.

from functools import wraps

def makebold(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return "<b>" + fn(*args, **kwargs) + "</b>"
    return wrapped

def makeitalic(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return "<i>" + fn(*args, **kwargs) + "</i>"
    return wrapped

@makebold
@makeitalic
def say():
    return 'Hello'

print(say())  # -> <b><i>Hello</i></b>

Refinements

As you can see there's a lot of duplicate code in these two decorators. Given this similarity it would be better for you to instead make a generic one that was actually a decorator factory—in other words, a decorator function that makes other decorators. That way there would be less code repetition—and allow the DRY principle to be followed.

def html_deco(tag):
    def decorator(fn):
        @wraps(fn)
        def wrapped(*args, **kwargs):
            return '<%s>' % tag + fn(*args, **kwargs) + '</%s>' % tag
        return wrapped
    return decorator

@html_deco('b')
@html_deco('i')
def greet(whom=''):
    return 'Hello' + (' ' + whom) if whom else ''

print(greet('world'))  # -> <b><i>Hello world</i></b>

To make the code more readable, you can assign a more descriptive name to the factory-generated decorators:

makebold = html_deco('b')
makeitalic = html_deco('i')

@makebold
@makeitalic
def greet(whom=''):
    return 'Hello' + (' ' + whom) if whom else ''

print(greet('world'))  # -> <b><i>Hello world</i></b>

or even combine them like this:

makebolditalic = lambda fn: makebold(makeitalic(fn))

@makebolditalic
def greet(whom=''):
    return 'Hello' + (' ' + whom) if whom else ''

print(greet('world'))  # -> <b><i>Hello world</i></b>

Efficiency

While the above examples do all work, the code generated involves a fair amount of overhead in the form of extraneous function calls when multiple decorators are applied at once. This may not matter, depending the exact usage (which might be I/O-bound, for instance).

If speed of the decorated function is important, the overhead can be kept to a single extra function call by writing a slightly different decorator factory-function which implements adding all the tags at once, so it can generate code that avoids the addtional function calls incurred by using separate decorators for each tag.

This requires more code in the decorator itself, but this only runs when it's being applied to function definitions, not later when they themselves are called. This also applies when creating more readable names by using lambda functions as previously illustrated. Sample:

def multi_html_deco(*tags):
    start_tags, end_tags = [], []
    for tag in tags:
        start_tags.append('<%s>' % tag)
        end_tags.append('</%s>' % tag)
    start_tags = ''.join(start_tags)
    end_tags = ''.join(reversed(end_tags))

    def decorator(fn):
        @wraps(fn)
        def wrapped(*args, **kwargs):
            return start_tags + fn(*args, **kwargs) + end_tags
        return wrapped
    return decorator

makebolditalic = multi_html_deco('b', 'i')

@makebolditalic
def greet(whom=''):
    return 'Hello' + (' ' + whom) if whom else ''

print(greet('world'))  # -> <b><i>Hello world</i></b>
Danette answered 17/5, 2015 at 3:26 Comment(1)
Great example and explanation of Decorator Factory pattern !! Very clear. Upvote.Tilbury
P
22

Another way of doing the same thing:

class bol(object):
  def __init__(self, f):
    self.f = f
  def __call__(self):
    return "<b>{}</b>".format(self.f())

class ita(object):
  def __init__(self, f):
    self.f = f
  def __call__(self):
    return "<i>{}</i>".format(self.f())

@bol
@ita
def sayhi():
  return 'hi'

Or, more flexibly:

class sty(object):
  def __init__(self, tag):
    self.tag = tag
  def __call__(self, f):
    def newf():
      return "<{tag}>{res}</{tag}>".format(res=f(), tag=self.tag)
    return newf

@sty('b')
@sty('i')
def sayhi():
  return 'hi'
Pow answered 26/12, 2011 at 6:13 Comment(1)
Needs functools.update_wrapper in order to keep sayhi.__name__ == "sayhi"Friesland
D
21

How can I make two decorators in Python that would do the following?

You want the following function, when called:

@makebold
@makeitalic
def say():
    return "Hello"

To return:

<b><i>Hello</i></b>

Simple solution

To most simply do this, make decorators that return lambdas (anonymous functions) that close over the function (closures) and call it:

def makeitalic(fn):
    return lambda: '<i>' + fn() + '</i>'

def makebold(fn):
    return lambda: '<b>' + fn() + '</b>'

Now use them as desired:

@makebold
@makeitalic
def say():
    return 'Hello'

and now:

>>> say()
'<b><i>Hello</i></b>'

Problems with the simple solution

But we seem to have nearly lost the original function.

>>> say
<function <lambda> at 0x4ACFA070>

To find it, we'd need to dig into the closure of each lambda, one of which is buried in the other:

>>> say.__closure__[0].cell_contents
<function <lambda> at 0x4ACFA030>
>>> say.__closure__[0].cell_contents.__closure__[0].cell_contents
<function say at 0x4ACFA730>

So if we put documentation on this function, or wanted to be able to decorate functions that take more than one argument, or we just wanted to know what function we were looking at in a debugging session, we need to do a bit more with our wrapper.

Full featured solution - overcoming most of these problems

We have the decorator wraps from the functools module in the standard library!

from functools import wraps

def makeitalic(fn):
    # must assign/update attributes from wrapped function to wrapper
    # __module__, __name__, __doc__, and __dict__ by default
    @wraps(fn) # explicitly give function whose attributes it is applying
    def wrapped(*args, **kwargs):
        return '<i>' + fn(*args, **kwargs) + '</i>'
    return wrapped

def makebold(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return '<b>' + fn(*args, **kwargs) + '</b>'
    return wrapped

It is unfortunate that there's still some boilerplate, but this is about as simple as we can make it.

In Python 3, you also get __qualname__ and __annotations__ assigned by default.

So now:

@makebold
@makeitalic
def say():
    """This function returns a bolded, italicized 'hello'"""
    return 'Hello'

And now:

>>> say
<function say at 0x14BB8F70>
>>> help(say)
Help on function say in module __main__:

say(*args, **kwargs)
    This function returns a bolded, italicized 'hello'

Conclusion

So we see that wraps makes the wrapping function do almost everything except tell us exactly what the function takes as arguments.

There are other modules that may attempt to tackle the problem, but the solution is not yet in the standard library.

Derbent answered 3/12, 2015 at 18:9 Comment(0)
B
14

A decorator takes the function definition and creates a new function that executes this function and transforms the result.

@deco
def do():
    ...

is equivalent to:

do = deco(do)

Example:

def deco(func):
    def inner(letter):
        return func(letter).upper()  #upper
    return inner

This

@deco
def do(number):
    return chr(number)  # number to letter

is equivalent to this

def do2(number):
    return chr(number)

do2 = deco(do2)

65 <=> 'a'

print(do(65))
print(do2(65))
>>> B
>>> B

To understand the decorator, it is important to notice, that decorator created a new function do which is inner that executes function and transforms the result.

Bouilli answered 26/7, 2012 at 16:11 Comment(0)
E
11

This answer has long been answered, but I thought I would share my Decorator class which makes writing new decorators easy and compact.

from abc import ABCMeta, abstractclassmethod

class Decorator(metaclass=ABCMeta):
    """ Acts as a base class for all decorators """

    def __init__(self):
        self.method = None

    def __call__(self, method):
        self.method = method
        return self.call

    @abstractclassmethod
    def call(self, *args, **kwargs):
        return self.method(*args, **kwargs)

For one I think this makes the behavior of decorators very clear, but it also makes it easy to define new decorators very concisely. For the example listed above, you could then solve it as:

class MakeBold(Decorator):
    def call():
        return "<b>" + self.method() + "</b>"

class MakeItalic(Decorator):
    def call():
        return "<i>" + self.method() + "</i>"

@MakeBold()
@MakeItalic()
def say():
   return "Hello"

You could also use it to do more complex tasks, like for instance a decorator which automatically makes the function get applied recursively to all arguments in an iterator:

class ApplyRecursive(Decorator):
    def __init__(self, *types):
        super().__init__()
        if not len(types):
            types = (dict, list, tuple, set)
        self._types = types

    def call(self, arg):
        if dict in self._types and isinstance(arg, dict):
            return {key: self.call(value) for key, value in arg.items()}

        if set in self._types and isinstance(arg, set):
            return set(self.call(value) for value in arg)

        if tuple in self._types and isinstance(arg, tuple):
            return tuple(self.call(value) for value in arg)

        if list in self._types and isinstance(arg, list):
            return list(self.call(value) for value in arg)

        return self.method(arg)


@ApplyRecursive(tuple, set, dict)
def double(arg):
    return 2*arg

print(double(1))
print(double({'a': 1, 'b': 2}))
print(double({1, 2, 3}))
print(double((1, 2, 3, 4)))
print(double([1, 2, 3, 4, 5]))

Which prints:

2
{'a': 2, 'b': 4}
{2, 4, 6}
(2, 4, 6, 8)
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

Notice that this example didn't include the list type in the instantiation of the decorator, so in the final print statement the method gets applied to the list itself, not the elements of the list.

Elegy answered 6/11, 2018 at 17:9 Comment(0)
O
9
#decorator.py
def makeHtmlTag(tag, *args, **kwds):
    def real_decorator(fn):
        css_class = " class='{0}'".format(kwds["css_class"]) \
                                 if "css_class" in kwds else ""
        def wrapped(*args, **kwds):
            return "<"+tag+css_class+">" + fn(*args, **kwds) + "</"+tag+">"
        return wrapped
    # return decorator dont call it
    return real_decorator

@makeHtmlTag(tag="b", css_class="bold_css")
@makeHtmlTag(tag="i", css_class="italic_css")
def hello():
    return "hello world"

print hello()

You can also write decorator in Class

#class.py
class makeHtmlTagClass(object):
    def __init__(self, tag, css_class=""):
        self._tag = tag
        self._css_class = " class='{0}'".format(css_class) \
                                       if css_class != "" else ""

    def __call__(self, fn):
        def wrapped(*args, **kwargs):
            return "<" + self._tag + self._css_class+">"  \
                       + fn(*args, **kwargs) + "</" + self._tag + ">"
        return wrapped

@makeHtmlTagClass(tag="b", css_class="bold_css")
@makeHtmlTagClass(tag="i", css_class="italic_css")
def hello(name):
    return "Hello, {}".format(name)

print hello("Your name")
Okhotsk answered 3/4, 2014 at 9:43 Comment(1)
The reason to like a class here is that there is clearly related behavior, with two instances. You can actually get your two decorators by assigning the constructed classes to the names you wanted, rather than re-iterating the parameters. This is harder to do with a function. Adding it to the example would point out why this is not just redundant.Ypsilanti
T
7

Here is a simple example of chaining decorators. Note the last line - it shows what is going on under the covers.

############################################################
#
#    decorators
#
############################################################

def bold(fn):
    def decorate():
        # surround with bold tags before calling original function
        return "<b>" + fn() + "</b>"
    return decorate


def uk(fn):
    def decorate():
        # swap month and day
        fields = fn().split('/')
        date = fields[1] + "/" + fields[0] + "/" + fields[2]
        return date
    return decorate

import datetime
def getDate():
    now = datetime.datetime.now()
    return "%d/%d/%d" % (now.day, now.month, now.year)

@bold
def getBoldDate(): 
    return getDate()

@uk
def getUkDate():
    return getDate()

@bold
@uk
def getBoldUkDate():
    return getDate()


print getDate()
print getBoldDate()
print getUkDate()
print getBoldUkDate()
# what is happening under the covers
print bold(uk(getDate))()

The output looks like:

17/6/2013
<b>17/6/2013</b>
6/17/2013
<b>6/17/2013</b>
<b>6/17/2013</b>
Torture answered 17/6, 2013 at 4:43 Comment(0)
H
7

Paolo Bergantino's answer has the great advantage of only using the stdlib, and works for this simple example where there are no decorator arguments nor decorated function arguments.

However it has 3 major limitations if you want to tackle more general cases:

  • as already noted in several answers, you can not easily modify the code to add optional decorator arguments. For example creating a makestyle(style='bold') decorator is non-trivial.
  • besides, wrappers created with @functools.wraps do not preserve the signature, so if bad arguments are provided they will start executing, and might raise a different kind of error than the usual TypeError.
  • finally, it is quite difficult in wrappers created with @functools.wraps to access an argument based on its name. Indeed the argument can appear in *args, in **kwargs, or may not appear at all (if it is optional).

I wrote decopatch to solve the first issue, and wrote makefun.wraps to solve the other two. Note that makefun leverages the same trick than the famous decorator lib.

This is how you would create a decorator with arguments, returning truly signature-preserving wrappers:

from decopatch import function_decorator, DECORATED
from makefun import wraps

@function_decorator
def makestyle(st='b', fn=DECORATED):
    open_tag = "<%s>" % st
    close_tag = "</%s>" % st

    @wraps(fn)
    def wrapped(*args, **kwargs):
        return open_tag + fn(*args, **kwargs) + close_tag

    return wrapped

decopatch provides you with two other development styles that hide or show the various python concepts, depending on your preferences. The most compact style is the following:

from decopatch import function_decorator, WRAPPED, F_ARGS, F_KWARGS

@function_decorator
def makestyle(st='b', fn=WRAPPED, f_args=F_ARGS, f_kwargs=F_KWARGS):
    open_tag = "<%s>" % st
    close_tag = "</%s>" % st
    return open_tag + fn(*f_args, **f_kwargs) + close_tag

In both cases you can check that the decorator works as expected:

@makestyle
@makestyle('i')
def hello(who):
    return "hello %s" % who

assert hello('world') == '<b><i>hello world</i></b>'    

Please refer to the documentation for details.

Horizontal answered 11/3, 2019 at 15:24 Comment(0)
L
6

Speaking of the counter example - as given above, the counter will be shared between all functions that use the decorator:

def counter(func):
    def wrapped(*args, **kws):
        print 'Called #%i' % wrapped.count
        wrapped.count += 1
        return func(*args, **kws)
    wrapped.count = 0
    return wrapped

That way, your decorator can be reused for different functions (or used to decorate the same function multiple times: func_counter1 = counter(func); func_counter2 = counter(func)), and the counter variable will remain private to each.

Lipoma answered 2/3, 2012 at 21:47 Comment(0)
D
6

Decorate functions with different number of arguments:

def frame_tests(fn):
    def wrapper(*args):
        print "\nStart: %s" %(fn.__name__)
        fn(*args)
        print "End: %s\n" %(fn.__name__)
    return wrapper

@frame_tests
def test_fn1():
    print "This is only a test!"

@frame_tests
def test_fn2(s1):
    print "This is only a test! %s" %(s1)

@frame_tests
def test_fn3(s1, s2):
    print "This is only a test! %s %s" %(s1, s2)

if __name__ == "__main__":
    test_fn1()
    test_fn2('OK!')
    test_fn3('OK!', 'Just a test!')

Result:

Start: test_fn1  
This is only a test!  
End: test_fn1  
  
  
Start: test_fn2  
This is only a test! OK!  
End: test_fn2  
  
  
Start: test_fn3  
This is only a test! OK! Just a test!  
End: test_fn3  
Dillondillow answered 5/4, 2013 at 18:18 Comment(1)
This could easily be made even more versatile by also providing support for keyword arguments via def wrapper(*args, **kwargs): and fn(*args, **kwargs).Danette
P
2

Consider the following decorator, note that we are returning the wrapper() function as an object

def make_bold(func):
    def wrapper():
        return '<b>'+func()+'</b>'
    return wrapper

So This

@make_bold
def say():
    return "Hello"

evaluates to this

x = make_bold(say)

Note that x is not the say() but the wrapper object that calls say() internally. That is how decorator works. It always returns the wrapper object which calls the actual function. In case of chaining this

@make_italic
@make_bold
def say():
    return "Hello"

gets converted to this

x = make_bold(say)
y = make_italic(x)

Below is the complete code

def make_italic(func):
    def wrapper():
        return '<i>'+func()+'</i>'
    return wrapper


def make_bold(func):
    def wrapper():
        return '<b>'+func()+'</b>'
    return wrapper


@make_italic
@make_bold
def say():
    return "Hello"


if __name__ == '__main__':
    # x = make_bold(say) When you wrap say with make_bold decorator
    # y = make_italic(x) When you also add make_italic as part of chaining
    # print(y())
    print(say())


The above code will return

<i><b>Hello</b></i>

Hope this helps

Presto answered 22/12, 2022 at 12:54 Comment(0)
U
1

With make_bold() and make_italic() below:

def make_bold(func):
    def core(*args, **kwargs):
        result = func(*args, **kwargs)
        return "<b>" + result + "</b>"
    return core

def make_italic(func):
    def core(*args, **kwargs):
        result = func(*args, **kwargs)
        return "<i>" + result + "</i>"
    return core

You can use them as decorators with say() as shown below:

@make_bold
@make_italic
def say():
   return "Hello"

print(say())

Output:

<b><i>Hello</i></b>

And of course, you can directly use make_bold() and make_italic() without decorators as shown below:

def say():
    return "Hello"
    
f1 = make_italic(say)
f2 = make_bold(f1)
result = f2()
print(result)

In short:

def say():
    return "Hello"
    
result = make_bold(make_italic(say))()
print(result)

Output:

<b><i>Hello</i></b>
Underlayer answered 12/11, 2022 at 13:18 Comment(1)
This actually answers the question directly. Upvote !!Tilbury
Q
0

I add a case when you need to add custom parameters in decorator, pass it to final function and then work it with.

the very decorators:

def jwt_or_redirect(fn):
  @wraps(fn)
  def decorator(*args, **kwargs):
    ...
    return fn(*args, **kwargs)
  return decorator

def jwt_refresh(fn):
  @wraps(fn)
  def decorator(*args, **kwargs):
    ...
    new_kwargs = {'refreshed_jwt': 'xxxxx-xxxxxx'}
    new_kwargs.update(kwargs)
    return fn(*args, **new_kwargs)
  return decorator

and the final function:

@app.route('/')
@jwt_or_redirect
@jwt_refresh
def home_page(*args, **kwargs):
  return kwargs['refreched_jwt']
Quinlan answered 24/4, 2021 at 21:42 Comment(0)
P
0

Yet another example of nested decorators for plotting an image:

import matplotlib.pylab as plt

def remove_axis(func):
    def inner(img, alpha):
        plt.axis('off')
        func(img, alpha)
    return inner

def plot_gray(func):
    def inner(img, alpha):
        plt.gray()
        func(img, alpha)
    return inner

@remove_axis
@plot_gray
def plot_image(img, alpha):
    plt.imshow(img, alpha=alpha)
    plt.show()

Now, let's show a color image first without axis labels using the nested decorators:

plot_image(plt.imread('lena_color.jpg'), 0.4)

enter image description here

Next, let's show a gray scale image without axis labels using the nested decorators remove_axis and plot_gray (we need to cmap='gray', otherwise the default colormap is viridis, so a grayscale image is by default not displayed in black and white shades, unless explicitly specified)

plot_image(plt.imread('lena_bw.jpg'), 0.8)

enter image description here

The above function call reduces down to the following nested call

remove_axis(plot_gray(plot_image))(img, alpha)
Pioneer answered 20/3, 2022 at 11:13 Comment(0)
S
0

python 3.9 the lambda expressions can be used as decorators.

For your question

@lambda func: (lambda *variable: '<b>' + func(*variable) + '</b>')
@lambda func: (lambda *variable: '<i>' + func(*variable) + '</i>')
def say():
    return "Hello"

print(say())

If you want to reuse the above lambdas after first function call, it is possible to assign them to a variable and reuse. Example below.

@make_bold := lambda func: (lambda *variable: '<b>' + func(*variable) + '</b>')
@make_italic := lambda func: (lambda *variable: '<i>' + func(*variable) + '</i>')
def say():
    return "Hello"

@make_bold
@make_italic
def say2():
    return "World"

print(say())
print(say2())
Stair answered 8/10, 2023 at 0:47 Comment(0)
B
-1

Problem

How do we make two decorators in Python that would do the following?

@make_bold
@make_italic
def say():
    return "Hello"

Calling say() should return "<b><i>Hello</i></b>"


Solution


make_bold

from functools import update_wrapper  

class make_bold:

    def __new__(cls, kallable):
        instance = super().__new__(cls)
        instance = update_wrapper(instance, kallable)
        return instance

    def __init__(self, kallable):
        self._kallable = kallable
        self._file     = sys.stdout

    def __call__(self, *args, **kwargs):   
        # `iret` ...... initial return value
        # `oret` ...... output  return value
        iret = self._kallable(*args, **kwargs)
        oret = "<b>" + r + "</b>"
        
    def __getattr__(self, attrname:str):  
        return getattr(self._kallable, attrname) 

make_italic

from functools import update_wrapper  

class make_italic:

    def __new__(cls, kallable):
        instance = super().__new__(cls)
        instance = update_wrapper(instance, kallable)
        return instance

    def __init__(self, kallable):
        self._kallable = kallable
        self._file     = sys.stdout

    def __call__(self, *args, **kwargs):   
        # `iret` ...... initial return value
        # `oret` ...... output  return value
        iret = self._kallable(*args, **kwargs)
        ret  = "".join(str(x) for x in iret)
        oret = "<i>" + ret + "</i>"
        
    def __getattr__(self, attrname:str):  
        return getattr(self._kallable, attrname) 

I added one additional line to make_italic to modify the value returned by the wrapped function.

ret = "".join(str(x) for x in iret)

The line of code may or may not be useful to some people:

   ABOUT...         ret = "".join(str(x) for x in iret)
     +--------------+---------------------------+----------+
     | non-standard |           input           |  output  |  
     | notation     |                           |          |
     | for          |                           |          |
     | input        |                           |          |
     | type         |                           |          |
     +--------------+---------------------------+----------+
     | string       | 'howdy'                   | 'howdy'  |
     | tuple<char>  | ('h', 'o', 'w', 'd', 'y') | 'howdy'  |
     | list<char>   | ['h', 'o', 'w', 'd', 'y'] | 'howdy'  |
     | list<string> | ['ho', 'wdy']             | 'howdy'  |
     | list<int>    | [1, 2, 3, 456]            | '123456' |
     +--------------+---------------------------+----------+
Benedic answered 23/4, 2023 at 0:18 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.