Eight years later, the ggforce
package offers a facet_zoom()
extension which is an implementation of Hadley Wickham's suggestion to show two plots (as referenced in Brian Diggs' answer).
Zoom facet
library(ggforce)
ggplot(df) +
aes(x = b, y = a) +
geom_col() +
facet_zoom(ylim = c(0, 10))
Unfortunately, the current version 0.2.2 of ggforce
throws an error with coord_flip()
so only vertical bars can be shown.
The zoomed facet shows the variations of the small values but still contains the large - now cropped - a4
bar. The zoom.data
parameter controls which values appear in the zoomed facet:
library(ggforce)
ggplot(df) +
aes(x = b, y = a) +
geom_col() +
facet_zoom(ylim = c(0, 10), zoom.data = ifelse(a <= 10, NA, FALSE))
Two plots
Hadley Wickham suggested
I think it's much more appropriate to show two plots - one of all the
data, and one of just the small values.
This code creates two plots
library(ggplot2)
g1 <- ggplot(df) +
aes(x = b, y = a) +
geom_col() +
coord_flip()
g2 <- ggplot(df) +
aes(x = b, y = a) +
geom_col() +
coord_flip() +
ylim(NA, 10)
which can be combined into one plot by
cowplot::plot_grid(g1, g2) # or ggpubr::ggarrange(g1, g2)
or
gridExtra::grid.arrange(g1, g2) # or egg::ggarrange(g1, g2)
Two facets
This was suggested in a comment by Chase and also by Brian Diggs in his answer who interpreted Hadley's suggestion to use
faceted plots, one with all the data, one zoomed in a particular region
but no code was supplied for this approach, so far.
As there is no simple way to scale facets separately (see related question, e.g.) the data needs to be manipulated:
library(dplyr)
library(ggplot2)
ggplot() +
aes(x = b, y = a) +
geom_col(data = df %>% mutate(subset = "all")) +
geom_col(data = df %>% filter(a <= 10) %>% mutate(subset = "small")) +
coord_flip() +
facet_wrap(~ subset, scales = "free_x")
log
scale which would make the graph easier to read. – Hubermanfacet_wrap()
withscales = "free_x"
– Equuleus