Nested JSON Array to Python Pandas DataFrame
Asked Answered
V

1

5

I'm trying to expand nested json array in pandas dataframe.

That's the JSON I have:

[ {
        "id": "0001",
        "name": "Stiven",
        "location": [{
                "country": "Colombia",
                "department": "Chocó",
                "city": "Quibdó"
            }, {
                "country": "Colombia",
                "department": "Antioquia",
                "city": "Medellin"
            }, {
                "country": "Colombia",
                "department": "Cundinamarca",
                "city": "Bogotá"
            }
        ]
    }, {
        "id": "0002",
        "name": "Jhon Jaime",
        "location": [{
                "country": "Colombia",
                "department": "Valle del Cauca",
                "city": "Cali"
            }, {
                "country": "Colombia",
                "department": "Putumayo",
                "city": "Mocoa"
            }, {
                "country": "Colombia",
                "department": "Arauca",
                "city": "Arauca"
            }
        ]
    }, {
        "id": "0003",
        "name": "Francisco",
        "location": [{
                "country": "Colombia",
                "department": "Atlántico",
                "city": "Barranquilla"
            }, {
                "country": "Colombia",
                "department": "Bolívar",
                "city": "Cartagena"
            }, {
                "country": "Colombia",
                "department": "La Guajira",
                "city": "Riohacha"
            }
        ]
    }
]

That's the dataframe I have:

index   id    name         location
0       0001  Stiven       [{'country':'Colombia', 'department': 'Chocó', 'city': 'Quibdó'}, {'country':'Colombia', 'department': 'Antioquia', 'city': 'Medellin'}, {'country':'Colombia', 'department': 'Cundinamarca', 'city': 'Bogotá'}]
1       0002  Jhon Jaime   [{'country':'Colombia', 'department': 'Valle del Cauca', 'city': 'Cali'}, {'country':'Colombia', 'department': 'Putumayo', 'city': 'Mocoa'}, {'country':'Colombia', 'department': 'Arauca', 'city': 'Arauca'}]
2       0003  Francisco    [{'country':'Colombia', 'department': 'Atlántico', 'city': 'Barranquilla'}, {'country':'Colombia', 'department': 'Bolívar', 'city': 'Cartagena'}, {'country':'Colombia', 'department': 'La Guajira', 'city': 'Riohacha'}] 

I need to convert to dataframe per id something like this:

index   id    name         country   department       city
0       0001  Stiven       Colombia  Chocó            Quibdó
1       0001  Stiven       Colombia  Antioquia        Medellin
2       0001  Stiven       Colombia  Cundinamarca     Bogotá
3       0002  Jhon Jaime   Colombia  Valle del Cauca  Cali
4       0002  Jhon Jaime   Colombia  Putumayo         Mocoa
5       0002  Jhon Jaime   Colombia  Arauca           Arauca
6       0003  Francisco    Colombia  Atlántico        Barranquilla
7       0003  Francisco    Colombia  Bolívar          Cartagena 
8       0003  Francisco    Colombia  La Guajira       Riohacha   
Venue answered 30/10, 2019 at 15:10 Comment(0)
O
7
  • If the JSON is being loaded from a file, use json.loads, but if the JSON is directly from an API, it may not be necessary.
  • Use pandas.json_normalize with the meta parameter, to convert the JSON into a DataFrame.
import pandas as pd
from pathlib import Path
import json

# path to file
p = Path(r'c:\path_to_file\test.json')

# read json
with p.open('r', encoding='utf-8') as f:
    data = json.loads(f.read())

# create dataframe
df = pd.json_normalize(data, record_path='location', meta=['id', 'name'])

# output
  country       department          city    id        name
 Colombia            Chocó        Quibdó  0001      Stiven
 Colombia        Antioquia      Medellin  0001      Stiven
 Colombia     Cundinamarca        Bogotá  0001      Stiven
 Colombia  Valle del Cauca          Cali  0002  Jhon Jaime
 Colombia         Putumayo         Mocoa  0002  Jhon Jaime
 Colombia           Arauca        Arauca  0002  Jhon Jaime
 Colombia        Atlántico  Barranquilla  0003   Francisco
 Colombia          Bolívar     Cartagena  0003   Francisco
 Colombia       La Guajira      Riohacha  0003   Francisco
Obtuse answered 30/10, 2019 at 16:24 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.