I read some materials about data augmentation in Keras but it is still a bit vague for me. Is there any parameter to control the the number of images created from each input image in the data augmentation step? In this example, I can't see any parameter that controls the number of images created from each image.
For example, in the below code I can have a parameter (num_imgs
) for controlling the number of images created from each input image and stored in a folder called preview; but in the real-time data augmentation there isn't any parameter for this purpose.
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
num_imgs = 20
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
img = load_img('data/train/cats/cat.0.jpg') # this is a PIL image
x = img_to_array(img) # this is a Numpy array with shape (3, 150, 150)
x = x.reshape((1,) + x.shape) # this is a Numpy array with shape (1, 3, 150, 150)
# the .flow() command below generates batches of randomly transformed images
# and saves the results to the `preview/` directory
i = 0
for batch in datagen.flow(x, batch_size=1,
save_to_dir='preview', save_prefix='cat', save_format='jpeg'):
i += 1
if i > num_imgs:
break # otherwise the generator would loop indefinitely