I have a csv which looks like this:
Date,Sentiment
2014-01-03,0.4
2014-01-04,-0.03
2014-01-09,0.0
2014-01-10,0.07
2014-01-12,0.0
2014-02-24,0.0
2014-02-25,0.0
2014-02-25,0.0
2014-02-26,0.0
2014-02-28,0.0
2014-03-01,0.1
2014-03-02,-0.5
2014-03-03,0.0
2014-03-08,-0.06
2014-03-11,-0.13
2014-03-22,0.0
2014-03-23,0.33
2014-03-23,0.3
2014-03-25,-0.14
2014-03-28,-0.25
etc
And my goal is to aggregate date by months and calculate average of months. Dates might not start with 1. or January. Problem is that I have a lot of data, that means I have more years. For this purpose I would like to find the soonest date (month) and from there start counting months and their averages. For example:
Month count, average
1, 0.4 (<= the earliest month)
2, -0.3
3, 0.0
...
12, 0.1
13, -0.4 (<= new year but counting of month is continuing)
14, 0.3
I'm using Pandas to open csv
data = pd.read_csv("pks.csv", sep=",")
so in data['Date']
I have dates and in data['Sentiment']
I have values. Any idea how to do it?
df.resample('M').mean()
– Medium