I'm trying to find a way to perform an indirect shift-left/right operation without actually using the variable shift op or any branches.
The particular PowerPC processor I'm working on has the quirk that a shift-by-constant-immediate, like
int ShiftByConstant( int x ) { return x << 3 ; }
is fast, single-op, and superscalar, whereas a shift-by-variable, like
int ShiftByVar( int x, int y ) { return x << y ; }
What I'd like to do is figure out which non-microcoded integer PPC ops the sraw decodes into and then issue them individually. This won't help with the latency of the sraw
itself — it'll replace one op with six — but in between those six ops I can dual-dispatch some work to the other execution units and get a net gain.
I can't seem to find anywhere what μops sraw decodes into — does anyone know how I can replace a variable bit-shift with a sequence of constant shifts and basic integer operations? (A for loop or a switch or anything with a branch in it won't work because the branch penalty is even bigger than the microcode penalty, even for correctly-predicted branches.)
This needn't be answered in assembly; I'm hoping to learn the algorithm rather than the particular code, so an answer in C or a high level language or even pseudo code would be perfectly helpful.
Edit: A couple of clarifications that I should add:
- I'm not even a little bit worried about portability
PPC has a conditional-move, so we can assume the existence of a branchless intrinsic function
int isel(a, b, c) { return a >= 0 ? b : c; }
(if you write out a ternary that does the same thing I'll get what you mean)
- integer multiplication is also microcoded and even slower than
sraw
. :-( - On Xenon PPC, the latency of a predicted branch is 8 cycles, so even one makes it as costly as the microcoded instruction. Jump-to-pointer (any indirect branch or function pointer) is a guaranteed mispredict, a 24 cycle stall.