Since it's a copy from a temp, it can and probably will be optimized out
The keyword here is probably. The standard allows, but does not require, a compiler to optimize the copy away. If some compilers allowed this code (optimized), but others rejected it (non-optimized), this would be very inconsistent.
So the standard prescribes a consistent way of handling this - everyone must check that the copy constructor is accessible, whether they then use it or not.
The idea is that all compilers should either accept the code or reject it. Otherwise it will be non-portable.
Another example, consider
A a;
B b;
A a1 = a;
A a2 = b;
It would be equally inconsistent to allow a2
but forbid a1
when A
s copy constructor is private.
We can also see from the Standard text that the two methods of initializing a class object were intended to be different (8.5/16):
If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified version of the source type is the same class as, or a derived class of, the class of the destination, constructors are considered. The applicable constructors are enumerated (13.3.1.3), and the best one is chosen through overload resolution (13.3). The constructor so selected is called to initialize the object, with the initializer expression or expression-list as its argument(s). If no constructor applies, or the overload resolution is ambiguous, the initialization is ill-formed.
Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences that can convert from the source type to the destination type or (when a conversion function is used) to a derived class thereof are enumerated as described in 13.3.1.4, and the best one is chosen through overload resolution (13.3). If the conversion cannot be done or is ambiguous, the initialization is ill-formed. The function selected is called with the initializer expression as its argument; if the function is a constructor, the call initializes a temporary of the cv-unqualified version of the destination type. The temporary is a prvalue. The result of the call (which is the temporary for the constructor case) is then used to direct-initialize, according to the rules above, the object that is the destination of the copy-initialization. In certain cases, an implementation is permitted to eliminate the copying inherent in this direct-initialization by constructing the intermediate result directly into the object being initialized; see 12.2, 12.8.
A difference is that the direct-initialization uses the constructors of the constructed class directly. With copy-initialization, other conversion functions are considered and these may produce a temporary that has to be copied.
b
to any type for whichA
has a constructor, whereas copy initialization must attempt to convertb
specifically toA
or a derived class ofA
. So, a plausible motivation for the difference is that copy initialization exists in order to suppress anyexplicit
non-copy constructors ofA
. – Cleruchyb
toA
that involved two user-defined conversions, the second of those being a constructor ofA
. What the answer over there doesn't address, is which of the differences was the actual motivation. – Cleruchy