I originally posted the benchmarks below with the purpose of recommending numpy.corrcoef
, foolishly not realizing that the original question already uses corrcoef
and was in fact asking about higher order polynomial fits. I've added an actual solution to the polynomial r-squared question using statsmodels, and I've left the original benchmarks, which while off-topic, are potentially useful to someone.
statsmodels
has the capability to calculate the r^2
of a polynomial fit directly, here are 2 methods...
import statsmodels.api as sm
import statsmodels.formula.api as smf
# Construct the columns for the different powers of x
def get_r2_statsmodels(x, y, k=1):
xpoly = np.column_stack([x**i for i in range(k+1)])
return sm.OLS(y, xpoly).fit().rsquared
# Use the formula API and construct a formula describing the polynomial
def get_r2_statsmodels_formula(x, y, k=1):
formula = 'y ~ 1 + ' + ' + '.join('I(x**{})'.format(i) for i in range(1, k+1))
data = {'x': x, 'y': y}
return smf.ols(formula, data).fit().rsquared # or rsquared_adj
To further take advantage of statsmodels
, one should also look at the fitted model summary, which can be printed or displayed as a rich HTML table in Jupyter/IPython notebook. The results object provides access to many useful statistical metrics in addition to rsquared
.
model = sm.OLS(y, xpoly)
results = model.fit()
results.summary()
Below is my original Answer where I benchmarked various linear regression r^2 methods...
The corrcoef function used in the Question calculates the correlation coefficient, r
, only for a single linear regression, so it doesn't address the question of r^2
for higher order polynomial fits. However, for what it's worth, I've come to find that for linear regression, it is indeed the fastest and most direct method of calculating r
.
def get_r2_numpy_corrcoef(x, y):
return np.corrcoef(x, y)[0, 1]**2
These were my timeit results from comparing a bunch of methods for 1000 random (x, y) points:
- Pure Python (direct
r
calculation)
- 1000 loops, best of 3: 1.59 ms per loop
- Numpy polyfit (applicable to n-th degree polynomial fits)
- 1000 loops, best of 3: 326 µs per loop
- Numpy Manual (direct
r
calculation)
- 10000 loops, best of 3: 62.1 µs per loop
- Numpy corrcoef (direct
r
calculation)
- 10000 loops, best of 3: 56.6 µs per loop
- Scipy (linear regression with
r
as an output)
- 1000 loops, best of 3: 676 µs per loop
- Statsmodels (can do n-th degree polynomial and many other fits)
- 1000 loops, best of 3: 422 µs per loop
The corrcoef method narrowly beats calculating the r^2 "manually" using numpy methods. It is >5X faster than the polyfit method and ~12X faster than the scipy.linregress. Just to reinforce what numpy is doing for you, it's 28X faster than pure python. I'm not well-versed in things like numba and pypy, so someone else would have to fill those gaps, but I think this is plenty convincing to me that corrcoef
is the best tool for calculating r
for a simple linear regression.
Here's my benchmarking code. I copy-pasted from a Jupyter Notebook (hard not to call it an IPython Notebook...), so I apologize if anything broke on the way. The %timeit magic command requires IPython.
import numpy as np
from scipy import stats
import statsmodels.api as sm
import math
n=1000
x = np.random.rand(1000)*10
x.sort()
y = 10 * x + (5+np.random.randn(1000)*10-5)
x_list = list(x)
y_list = list(y)
def get_r2_numpy(x, y):
slope, intercept = np.polyfit(x, y, 1)
r_squared = 1 - (sum((y - (slope * x + intercept))**2) / ((len(y) - 1) * np.var(y, ddof=1)))
return r_squared
def get_r2_scipy(x, y):
_, _, r_value, _, _ = stats.linregress(x, y)
return r_value**2
def get_r2_statsmodels(x, y):
return sm.OLS(y, sm.add_constant(x)).fit().rsquared
def get_r2_python(x_list, y_list):
n = len(x_list)
x_bar = sum(x_list)/n
y_bar = sum(y_list)/n
x_std = math.sqrt(sum([(xi-x_bar)**2 for xi in x_list])/(n-1))
y_std = math.sqrt(sum([(yi-y_bar)**2 for yi in y_list])/(n-1))
zx = [(xi-x_bar)/x_std for xi in x_list]
zy = [(yi-y_bar)/y_std for yi in y_list]
r = sum(zxi*zyi for zxi, zyi in zip(zx, zy))/(n-1)
return r**2
def get_r2_numpy_manual(x, y):
zx = (x-np.mean(x))/np.std(x, ddof=1)
zy = (y-np.mean(y))/np.std(y, ddof=1)
r = np.sum(zx*zy)/(len(x)-1)
return r**2
def get_r2_numpy_corrcoef(x, y):
return np.corrcoef(x, y)[0, 1]**2
print('Python')
%timeit get_r2_python(x_list, y_list)
print('Numpy polyfit')
%timeit get_r2_numpy(x, y)
print('Numpy Manual')
%timeit get_r2_numpy_manual(x, y)
print('Numpy corrcoef')
%timeit get_r2_numpy_corrcoef(x, y)
print('Scipy')
%timeit get_r2_scipy(x, y)
print('Statsmodels')
%timeit get_r2_statsmodels(x, y)
7/28/21 Benchmark results. (Python 3.7, numpy 1.19, scipy 1.6, statsmodels 0.12)
Python
2.41 ms ± 180 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Numpy polyfit
318 µs ± 44.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Numpy Manual
79.3 µs ± 4.05 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Numpy corrcoef
83.8 µs ± 1.37 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Scipy
221 µs ± 7.12 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Statsmodels
375 µs ± 3.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)