Simple method -
You can use Scikit-Learn's GridSearchCV
to find the best hyperparameters for your CatBoostRegressor
model. You can pass a dictionary of hyperparameters, and GridSearchCV
will loop through all the hyperparameters and tell you which parameters are best. You can use it like this -
from sklearn.model_selection import GridSearchCV
model = CatBoostRegressor()
parameters = {'depth' : [6,8,10],
'learning_rate' : [0.01, 0.05, 0.1],
'iterations' : [30, 50, 100]
}
grid = GridSearchCV(estimator=model, param_grid = parameters, cv = 2, n_jobs=-1)
grid.fit(X_train, y_train)
Another method -
Now-a-days, models are complex and have a lot of parameters to tune. People are using Bayesian Optimization techniques, like Optuna, to tune hyperparameters. You can use Optuna to tune CatBoostClassifier
like this:
!pip install optuna
import catboost
import optuna
def objective(trial):
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.2)
param = {
"objective": trial.suggest_categorical("objective", ["Logloss", "CrossEntropy"]),
'learning_rate' : trial.suggest_loguniform('learning_rate', 0.001, 0.3),
"colsample_bylevel": trial.suggest_float("colsample_bylevel", 0.01, 0.1),
"max_depth": trial.suggest_int("max_depth", 1, 15),
"boosting_type": trial.suggest_categorical("boosting_type", ["Ordered", "Plain"]),
"bootstrap_type": trial.suggest_categorical(
"bootstrap_type", ["Bayesian", "Bernoulli", "MVS"]),
}
if param["bootstrap_type"] == "Bayesian":
param["bagging_temperature"] = trial.suggest_float("bagging_temperature", 0, 10)
elif param["bootstrap_type"] == "Bernoulli":
param["subsample"] = trial.suggest_uniform("subsample", 0.1, 1)
gbm = catboost.CatBoostClassifier(**param, iterations = 10000)
gbm.fit(X_train, y_train, eval_set = [(X_val, y_val)], verbose = 0, early_stopping_rounds = 100)
preds = gbm.predict(X_val)
pred_labels = np.rint(preds)
accuracy = accuracy_score(y_val, pred_labels)
return accuracy
study = optuna.create_study(direction = "maximize")
study.optimize(objective, n_trials = 200, show_progress_bar = True)
This method take a lot of time (1-2 hrs, maybe). This method is best to use when you have a lot of parameters to tune. Else, use Grid Search CV.