My apologies if I'm missing something obvious. I've been thoroughly enjoying working with h2o in the last few days using R interface. I would like to evaluate my model, say a random forest, by plotting an ROC. The documentation seems to suggest that there is a straightforward way to do that:
Interpreting a DRF Model
- By default, the following output displays:
- Model parameters (hidden)
- A graph of the scoring history (number of trees vs. training MSE)
- A graph of the ROC curve (TPR vs. FPR)
- A graph of the variable importances ...
I've also seen that in python you can apply roc function here. But I can't seem to be able to find the way to do the same in R interface. Currently I'm extracting predictions from the model using h2o.cross_validation_holdout_predictions and then use pROC package from R to plot the ROC. But I would like to be able to do it directly from the H2O model object, or, perhaps, a H2OModelMetrics object.
Many thanks!